【题目】设数列
的前
项和为
,
,
.
(1)求数列
的通项公式;
(2)设数列
满足:
对于任意
,都有
成立.
①求数列
的通项公式;
②设数列
,问:数列
中是否存在三项,使得它们构成等差数列?若存在,求出这三项;若不存在,请说明理由.
【答案】(1)
,
.(2)①
,
.②见解析.
【解析】分析:(1)当
时,类比写出
,两式相减整理得
,当
时,求得
,从而求得数列
的通项公式.;
(2)①将
代入已知条件,用与(1)相似的方法,变换求出数列
的通项公式;
②由
的通项公式分析,得
…,假设存在三项
,
,
成等差数列,且
,则
,即
,根据数列
的单调性,化简得
,将
或
代入已知条件,即可得到结论.
详解:解:(1)由
, ①
得
, ②
由①-②得
,即
对①取
得,
,所以
,所以
为常数,
所以
为等比数列,首项为1,公比为
,即
,
.
(2)①由
,可得对于任意
有
, ③
则
, ④
则
, ⑤
由③-⑤得
,
对③取
得,
也适合上式,
因此
,
.
②由(1)(2)可知
,
则
,
所以当
时,
,即
,
当
时,
,即
在
且
上单调递减,
故
…,
假设存在三项
,
,
成等差数列,其中
,
,
,
由于
…,可不妨设
,则
(*),
即
,
因为
,
,
且
,则
且
,
由数列
的单调性可知,
,即
,
因为
,所以
,
即
,化简得
,
又
且
,所以
或
,
当
时,
,即
,由
时,
,此时
,
,
不构成等差数列,不合题意,
当
时,由题意
或
,即
,又
,代入(*)式得
,
因为数列
在
且
上单调递减,且
,
,所以
,
综上所述,数列
中存在三项
,
,
或
,
,
构成等差数列.
科目:高中数学 来源: 题型:
【题目】已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的3个红球和3个黑球,现从甲、乙两个盒内各任取2个球。
(1)求取出的4个球中没有红球的概率;
(2)求取出的4个球中恰有1个红球的概率;
(3)设
为取出的4个球中红球的个数,求
的分布列和数学期望。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,由直三棱柱
和四棱锥
构成的几何体中,
,平面
平面![]()
(I)求证:
;
(II)若M为
中点,求证:
平面
;
(III)在线段BC上(含端点)是否存在点P,使直线DP与平面
所成的角为
?若存在,求
得值,若不存在,说明理由.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数
,(
).
(1)若曲线
在点
处的切线方程为
,求实数am的值;
(2)关于x的方程
能否有三个不同的实根?证明你的结论;
(3)若
对任意
恒成立,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(题文)如图,长方形材料
中,已知
,
.点
为材料
内部一点,
于
,
于
,且
,
. 现要在长方形材料
中裁剪出四边形材料
,满足
,点
、
分别在边
,
上.
(1)设
,试将四边形材料
的面积表示为
的函数,并指明
的取值范围;
(2)试确定点
在
上的位置,使得四边形材料
的面积
最小,并求出其最小值.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知某超市2018年12个月的收入与支出数据的折线图如图所示:
![]()
根据该折线图可知,下列说法错误的是( )
A. 该超市2018年的12个月中的7月份的收益最高
B. 该超市2018年的12个月中的4月份的收益最低
C. 该超市2018年1-6月份的总收益低于2018年7-12月份的总收益
D. 该超市2018年7-12月份的总收益比2018年1-6月份的总收益增长了90万元
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在学习强国活动中,某市图书馆的科技类图书和时政类图书是市民借阅的热门图书.为了丰富图书资源,现对已借阅了科技类图书的市民(以下简称为“问卷市民”)进行随机问卷调查,若不借阅时政类图书记1分,若借阅时政类图书记2分,每位市民选择是否借阅时政类图书的概率均为
,市民之间选择意愿相互独立.
(1)从问卷市民中随机抽取4人,记总得分为随机变量
,求
的分布列和数学期望;
(2)(i)若从问卷市民中随机抽取
人,记总分恰为
分的概率为
,求数列
的前10项和;
(ⅱ)在对所有问卷市民进行随机问卷调查过程中,记已调查过的累计得分恰为
分的概率为
(比如:
表示累计得分为1分的概率,
表示累计得分为2分的概率,
),试探求
与
之间的关系,并求数列
的通项公式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在正三棱柱 ABC﹣A1B1C1 中,AB 1 ,若二面角 C AB C1 的大小为 60°,则点 C 到平面 ABC1 的距离为( )
![]()
A.
B.
C.
D.![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com