【题目】已知函数f(x)是定义在R上的偶函数,当
时,
,现已画出函数在y轴左侧的图象,如图所示,请根据图象.
![]()
(1)将函数
的图象补充完整,并写出函数
的递增区间;
(2)写出函数
的解析式;
(3)若函数
,求函数
的最小值.
科目:高中数学 来源: 题型:
【题目】
某建筑公司用8000万元购得一块空地,计划在该地块上建造一栋至少12层、每层4000平方米的楼房.经初步估计得知,如果将楼房建为x(x
12)层,则每平方米的平均建筑费用为Q(x)=3000+50x(单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?每平方米的平均综合费最小值是多少?
(注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=
)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的右焦点为
,坐标原点为
.椭圆
的动弦
过右焦点
且不垂直于坐标轴,
的中点为
,过
且垂直于线段
的直线交射线
于点![]()
(I)证明:点
在直线
上;
(Ⅱ)当四边形
是平行四边形时,求
的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某品牌汽车的
店,对最近100份分期付款购车情况进行统计,统计情况如下表所示.已知分9期付款的频率为0.4;该店经销一辆该品牌汽车,若顾客分3期付款,其利润为1万元;分6期或9期付款,其利润为2万元;分12期付款,其利润为3万元.
付款方式 | 分3期 | 分6期 | 分9期 | 分12期 |
频数 | 20 | 20 |
|
|
(1)若以上表计算出的频率近似替代概率,从该店采用分期付款购车的顾客(数量较大)中随机抽取3为顾客,求事件
:“至多有1位采用分6期付款“的概率
;
(2)按分层抽样方式从这100为顾客中抽取5人,再从抽取的5人中随机抽取3人,记该店在这3人身上赚取的总利润为随机变量
,求
的分布列和数学期望
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校高二年级举办了一次数学史知识竞赛活动,共有
名学生参加了这次竞赛.为了解本次竞赛的成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为
分)进行统计,统计结果见下表.请你根据频率分布表解答下列问题:
![]()
(1)填出频率分布表中的空格;
(2)为鼓励更多的学生了解“数学史”知识,成绩不低于
分的同学能获奖,请估计在参加的
名学生中大概有多少名学生获奖?
(3)在上述统计数据的分析中有一项计算见算法流程图,求输出的
的值.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系
中,直线
经过点
,其倾斜角为
,以原点
为极点,以
轴为非负半轴为极轴,与坐标系
取相同的长度单位,建立极坐标系.设曲线
的极坐标方程为
.
(1)若直线
与曲线
有公共点,求倾斜角
的取值范围;
(2)设
为曲线
上任意一点,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,直线l的参数方程为
;在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C的极坐标方程为
(1)若a=1,求C与l交点的直角坐标;![]()
(2)若C上的点到l的距离的最大值为
,求a.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com