精英家教网 > 高中数学 > 题目详情

【题目】如图,设椭圆的中心为原点,长轴在轴上,上顶点为,左、右焦点分别为,线段的中点分别为,且是面积为的直角三角形.

(1)求该椭圆的离心率和标准方程;

(2)过作直线交椭圆于两点,使,求的面积.

【答案】(1);(2)

【解析】试题分析:(1)设椭圆的方程为,F2(c,0),利用AB1B2是的直角三角形,|AB1|=AB2|,可得B1AB2为直角,从而,利用c2=a2﹣b2,可求得离心率,又=4,故可求椭圆标准方程;

(2)由()知B1(﹣2,0),B2(2,0),由题意,直线PQ的倾斜角不为0,故可设直线PQ的方程为x=my﹣2,代入椭圆方程,消元可得(m2+5)y2﹣4my﹣16﹣0,利用韦达定理及PB2QB2,利用可求m的值,进而可求PB2Q的面积.

试题解析:

(1)设椭圆的方程为 是面积为的直角三角形, 为直角,从而,得

,在中, 椭圆标准方程为.

(2)由(1)知,由题意,直线的倾斜角不为,故可设直线的方程为,代入椭圆方程,消元可得

,当时,可化为

的面积.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数 处有极值.

(Ⅰ)求a的值;

(Ⅱ)求f(x)在上的最大值和最小值;

(Ⅲ)在下面的坐标系中作出上的图象,若方程 上有2个不同的实数解,结合图象求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知平面上的三点 .

(1)求以 为焦点且过点 的椭圆的标准方程

(2)设点 关于直线 的对称点分别为 求以 为焦点且过点 的双曲线的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某保险公司利用简单随机抽样方法,对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如下:

赔付金额()

0

1 000

2 000

3 000

4 000

车辆数()

500

130

100

150

120

(1)若每辆车的投保金额均为2800,估计赔付金额大于投保金额的概率.

(2)在样本车辆中,车主是新司机的占10%,在赔付金额为4000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4000元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖.抽奖方法是:从装有2个红球A1 ,A2和1个白球B的甲箱与装有2个红球a1 ,a2和2个白球b1,b2的乙箱中,各随机摸出1个球.若摸出的2个球都是红球则中奖,否则不中奖.

(1)用球的标号列出所有可能的摸出结果;

(2)有人认为:两个箱子中的红球比白球多,所以中奖的概率大于不中奖的概率.你认为正确吗?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)的图象与函数y=x3﹣3x2+2的图象关于点( ,0)对称,过点(1,t)仅能作曲线y=f(x)的一条切线,则实数t的取值范围是(
A.(﹣3,﹣2)
B.[﹣3,﹣2]
C.(﹣∞,﹣3)∪(﹣2,+∞)
D.(﹣∞,﹣3)∪[﹣2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了摸清整个江门大道的交通状况,工作人员随机选取20处路段,在给定的测试时间内记录到机动车的通行数量情况如下(单位:辆): 147 161 170 180 163 172 178 167 191 182
181 173 174 165 158 154 159 189 168 169
(Ⅰ)完成如下频数分布表,并作频率分布直方图;

通行数量区间

[145,155)

[155,165)

[165,175)

[175,185)

[185,195)

频数

(Ⅱ)现用分层抽样的方法从通行数量区间为[165,175)、[175,185)及[185,195)的路段中取出7处加以优化,再从这7处中随机选2处安装智能交通信号灯,设所取出的7处中,通行数量区间为[165,175)路段安装智能交通信号灯的数量为随机变量X(单位:盏),试求随机变量X的分布列与数学期望E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】极坐标系的极点在平面直角坐标系的原点O处,极轴与x轴的正半轴重合,两坐标系单位长度相同.已知曲线的极坐标方程为ρ=2cosθ+2sinθ,直线l的参数方程为 (t为参数).
(Ⅰ)将直线l的参数方程化为普通方程,将曲线C的极坐标方程化为直角坐标方程;
(Ⅱ)设曲线C上到直线l的距离为d的点的个数为f(d),求f(d)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线过坐标原点的方程为

(1)当直线的斜率为与圆相交所得的弦长

(2)设直线与圆交于两点的中点求直线的方程

查看答案和解析>>

同步练习册答案