【题目】如图,设椭圆的中心为原点
,长轴在
轴上,上顶点为
,左、右焦点分别为
,线段
的中点分别为
,且
是面积为
的直角三角形.
![]()
(1)求该椭圆的离心率和标准方程;
(2)过
作直线交椭圆于
两点,使
,求
的面积.
【答案】(1)
;(2)![]()
【解析】试题分析:(1)设椭圆的方程为
,F2(c,0),利用△AB1B2是的直角三角形,|AB1|=AB2|,可得∠B1AB2为直角,从而
,利用c2=a2﹣b2,可求得离心率,又
=4,故可求椭圆标准方程;
(2)由(Ⅰ)知B1(﹣2,0),B2(2,0),由题意,直线PQ的倾斜角不为0,故可设直线PQ的方程为x=my﹣2,代入椭圆方程,消元可得(m2+5)y2﹣4my﹣16﹣0,利用韦达定理及PB2⊥QB2,利用
可求m的值,进而可求△PB2Q的面积.
试题解析:
(1)设椭圆的方程为
,
,∵
是面积为
的直角三角形,
,∴
为直角,从而
,得
,∵![]()
,在
中,
,∴
,∵
,∴椭圆标准方程为
.
(2)由(1)知
,由题意,直线
的倾斜角不为
,故可设直线
的方程为
,代入椭圆方程,消元可得
,①
设
,
∵
,
∴
,∵
,∴
,∴
,当
时,①可化为
,
∴
,
∴
的面积
.
科目:高中数学 来源: 题型:
【题目】已知函数
在
处有极值.
(Ⅰ)求a的值;
(Ⅱ)求f(x)在
上的最大值和最小值;
(Ⅲ)在下面的坐标系中作出
在
上的图象,若方程
在
上有2个不同的实数解,结合图象求实数
的取值范围.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知平面上的三点
、
、
.
(1)求以
、
为焦点且过点
的椭圆的标准方程;
(2)设点
、
、
关于直线
的对称点分别为
、
、
,求以
、
为焦点且过点
的双曲线的标准方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某保险公司利用简单随机抽样方法,对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如下:
赔付金额(元) | 0 | 1 000 | 2 000 | 3 000 | 4 000 |
车辆数(辆) | 500 | 130 | 100 | 150 | 120 |
(1)若每辆车的投保金额均为2800元,估计赔付金额大于投保金额的概率.
(2)在样本车辆中,车主是新司机的占10%,在赔付金额为4000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4000元的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖.抽奖方法是:从装有2个红球A1 ,A2和1个白球B的甲箱与装有2个红球a1 ,a2和2个白球b1,b2的乙箱中,各随机摸出1个球.若摸出的2个球都是红球则中奖,否则不中奖.
(1)用球的标号列出所有可能的摸出结果;
(2)有人认为:两个箱子中的红球比白球多,所以中奖的概率大于不中奖的概率.你认为正确吗?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)的图象与函数y=x3﹣3x2+2的图象关于点(
,0)对称,过点(1,t)仅能作曲线y=f(x)的一条切线,则实数t的取值范围是( )
A.(﹣3,﹣2)
B.[﹣3,﹣2]
C.(﹣∞,﹣3)∪(﹣2,+∞)
D.(﹣∞,﹣3)∪[﹣2,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了摸清整个江门大道的交通状况,工作人员随机选取20处路段,在给定的测试时间内记录到机动车的通行数量情况如下(单位:辆): 147 161 170 180 163 172 178 167 191 182
181 173 174 165 158 154 159 189 168 169
(Ⅰ)完成如下频数分布表,并作频率分布直方图;
通行数量区间 | [145,155) | [155,165) | [165,175) | [175,185) | [185,195) |
频数 |
(Ⅱ)现用分层抽样的方法从通行数量区间为[165,175)、[175,185)及[185,195)的路段中取出7处加以优化,再从这7处中随机选2处安装智能交通信号灯,设所取出的7处中,通行数量区间为[165,175)路段安装智能交通信号灯的数量为随机变量X(单位:盏),试求随机变量X的分布列与数学期望E(X).![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】极坐标系的极点在平面直角坐标系的原点O处,极轴与x轴的正半轴重合,两坐标系单位长度相同.已知曲线的极坐标方程为ρ=2cosθ+2sinθ,直线l的参数方程为
(t为参数).
(Ⅰ)将直线l的参数方程化为普通方程,将曲线C的极坐标方程化为直角坐标方程;
(Ⅱ)设曲线C上到直线l的距离为d的点的个数为f(d),求f(d)的解析式.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com