精英家教网 > 高中数学 > 题目详情

某陶瓷厂准备烧制甲、乙、丙三件不同的工艺品,制作过程必须先后经过两次烧制,当第一次烧制合格后方可进入第二次烧制,两次烧制过程相互独立.根据该厂现有的技术水平,经过第一次烧制后,甲、乙、丙三件产品合格的概率依次为0.5,  0.6,  0.4.经过第二次烧制后,甲、乙、丙三件产品合格的概率依次为0.6,0.5,0.75.

(1)求第一次烧制后恰有一件产品合格的概率;

(2)经过前后两次烧制后,合格工艺品的个数为ξ,求随机变量ξ的期望.

分别记甲、乙、丙经第一次烧制后合格为事件

⑴设表示第一次烧制后恰好有一件合格,则

    

⑵解法一:因为每件工艺品经过两次烧制后合格的概率均为

所以, 故

解法二:分别记甲、乙、丙经过两次烧制后合格为事件,则

,所以

.于是,


解析:

三件工艺品的烧制过程是相互独立的,每一件工艺品的两个烧制过程也是独立的,因为本题要利用概率的乘法公式进行计算求值,⑴第一次烧制后恰有一件产品合格,因为不知道哪一件,故有3种情况;⑵经过两次烧制后合格品的个数可能的值为0,1,2,3,符合二项分布.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某陶瓷厂准备烧制甲、乙、丙三件不同的工艺品,制作过程必须先后经过两次烧制,当第一次烧制合格后方可进入第二次烧制,两次烧制过程相互独立.根据该厂现有的技术水平,经过第一次烧制后,甲、乙、丙三件产品合格的概率依次为0.5,0.6,0.4,经过第二次烧制后,甲、乙、丙三件产品合格的概率依次为0.6,0.5,0.75.
(1)求第一次烧制后恰有一件产品合格的概率;
(2)经过前后两次烧制后,合格工艺品的个数为ξ,求随机变量ξ的期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•重庆模拟)某陶瓷厂准备烧制甲、乙、丙三件不同的工艺品,制作过程必须先后经过两次烧制,当第一次烧制合格后方可进行第二次烧制,两次烧制过程相互独立.根据该厂现有的技术水平,经过第一次烧制后,甲、乙、丙三件产品的合格率依次为
4
5
3
4
2
3
.经过第二次烧制后,甲、乙、丙三件产品的合格率均为
3
5

(Ⅰ)求第一次烧制后恰有一件产品合格的概率;
(Ⅱ)求经过前后两次烧制后三件产品均合格的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)某陶瓷厂准备烧制甲、乙、丙三件不同的工艺品,制作过程必须先后经过两次烧制,当第一次烧制合格后方可进入第二次烧制,两次烧制过程相互独立.根据该厂现有的技术水平,经过第一次烧制后,甲、乙、丙三件产品合格的概率依次为,经过第二次烧制后,甲、乙、丙三件产品合格的概率依次为

(1)求第一次烧制后恰有一件产品合格的概率;(2)经过前后两次烧制后,合格工艺品的个数为,求随机变量的期望.

查看答案和解析>>

科目:高中数学 来源:2010年四川省成都石室中学高三第三次模拟考试(理) 题型:解答题

(12分)某陶瓷厂准备烧制甲、乙、丙三件不同的工艺品,制作过程必须先后经过两次烧制,当第一次烧制合格后方可进入第二次烧作,两次烧制过程相互独立,根据该厂现有的技术水平,经过第一次烧制后,甲、乙、丙三件产品合格的概率依次为0.5,0.6,0.4经过第二次烧制后,甲、乙、丙三件产品合格的概率依次为0.6,0.5,0.75。
(1)求第一次烧制后恰有一件产品合格的概率;
(2)经过前后两次烧制后,合格工艺品的个数为,求随机变量的期望。

查看答案和解析>>

科目:高中数学 来源:2010-2011年广东省汕头市高二下学期期中考试理数 题型:解答题

(本小题满分12分)

某陶瓷厂准备烧制甲、乙、丙三件不同的工艺品,制作过程必须先后经过两次烧制,当第一次烧制合格后方可进入第二次烧制,两次烧制过程相互独立.根据该厂现有的技术水平,经过第一次烧制后,甲、乙、丙三件产品合格的概率依次为,经过第二次烧制后,甲、乙、丙三件产品合格的概率依次为

(1)求第一次烧制后恰有一件产品合格的概率;

(2)经过前后两次烧制后,合格工艺品的个数为,求随机变量的期望.

 

 

查看答案和解析>>

同步练习册答案