已知抛物线顶点在原点,焦点在x轴上,又知此抛物线上一点A(4,m)到焦点的距离为6.
(1)求此抛物线的方程;
(2)若此抛物线方程与直线
相交于不同的两点A、B,且AB中点横坐标为2,求k的值.
科目:高中数学 来源: 题型:解答题
设抛物线
,
为焦点,
为准线,准线与
轴交点为![]()
(1)求
;
(2)过点
的直线与抛物线
交于
两点,直线
与抛物线交于点
.
①设
三点的横坐标分别为
,计算:
及
的值;
②若直线
与抛物线交于点
,求证:
三点共线.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
设点
到直线
的距离与它到定点
的距离之比为
,并记点
的轨迹为曲线
.
(Ⅰ)求曲线
的方程;
(Ⅱ)设
,过点
的直线
与曲线
相交于
两点,当线段
的中点落在由四点
构成的四边形内(包括边界)时,求直线
斜率的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)已知椭圆
:
(
)的离心率为
,过右焦点
且斜率为1的直线交椭圆
于
两点,
为弦
的中点。
(1)求直线
(
为坐标原点)的斜率
;
(2)设
椭圆
上任意一点,且
,求
的最大值和最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在直角坐标系
中,点
,点
为抛物线
的焦点,
线段
恰被抛物线
平分.
(Ⅰ)求
的值;
(Ⅱ)过点
作直线
交抛物线
于
两点,设直线
、
、
的斜率分别为
、
、
,问
能否成公差不为零的等差数列?若能,求直线
的方程;若不能,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分,(Ⅰ)小问3分,(Ⅱ)小问9分.)
直线
称为椭圆
的“特征直线”,若椭圆的离心率
.(1)求椭圆的“特征直线”方程;
(2)过椭圆C上一点
作圆
的切线,切点为P、Q,直线PQ与椭圆的“特征直线”相交于点E、F,O为坐标原点,若
取值范围恰为
,求椭圆C的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
(
)过点
(0,2),离心率
.
(Ⅰ)求椭圆的方程;
(Ⅱ)设过定点
(2,0)的直线
与椭圆相交于
两点,且
为锐角(其中
为坐标原点),求直线
斜率的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知焦点在
轴上的椭圆
过点
,且离心率为
,
为椭圆
的左顶点.
(1)求椭圆
的标准方程;
(2)已知过点
的直线
与椭圆
交于
,
两点.
① 若直线
垂直于
轴,求
的大小;
② 若直线
与
轴不垂直,是否存在直线
使得
为等腰三角形?如果存在,求出直线
的方程;如果不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com