设抛物线
,
为焦点,
为准线,准线与
轴交点为![]()
(1)求
;
(2)过点
的直线与抛物线
交于
两点,直线
与抛物线交于点
.
①设
三点的横坐标分别为
,计算:
及
的值;
②若直线
与抛物线交于点
,求证:
三点共线.
科目:高中数学 来源: 题型:解答题
过点
的直线
交直线
于
,过点
的直线
交
轴于
点,
,
.
(1)求动点
的轨迹
的方程;
(2)设直线l与
相交于不同的两点
、
,已知点
的坐标为(-2,0),点Q(0,
)在线段
的垂直平分线上且
≤4,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在平面直角坐标系
O
中,直线
与抛物线
=2
相交于A、B两点。
(1)求证:命题“如果直线
过点T(3,0),那么
=3”是真命题;
(2)写出(1)中命题的逆命题,判断它是真命题还是假命题,并说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在平面直角坐标系xOy中,如图,已知椭圆C:
的上、下顶点分别为A、B,点P在椭圆C上且异于点A、B,直线AP、PB与直线l:y=-2分别交于点M、N.![]()
(1)设直线AP、PB的斜率分别为k1,k2,求证:k1·k2为定值;
(2)求线段MN长的最小值;
(3)当点P运动时,以MN为直径的圆是否经过某定点?请证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知两点
及
,点
在以
、
为焦点的椭圆
上,且
、
、
构成等差数列.![]()
(1)求椭圆
的方程;
(2)如图7,动直线
与椭圆
有且仅有一个公共点,点
是直线
上的两点,且
,
. 求四边形
面积
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线顶点在原点,焦点在x轴上,又知此抛物线上一点A(4,m)到焦点的距离为6.
(1)求此抛物线的方程;
(2)若此抛物线方程与直线
相交于不同的两点A、B,且AB中点横坐标为2,求k的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com