(本题满分14分) 已知正四棱锥P-ABCD中,底面是边长为2 的正方形,高为
.M为线段PC的中点.
(Ⅰ) 求证:PA∥平面MDB;
(Ⅱ) N为AP的中点,求CN与平面MBD所成角的正切值.
![]()
(Ⅰ)
![]()
证明:在四棱锥P-ABCD中,连结AC交BD于点O,连结OM,PO.由条件可得PO=
,AC=2
,PA=PC=2,CO=AO=
.
因为在△PAC中,M为PC的中点,O为AC的中点,
所以OM为△PAC的中位线,得OM∥AP,
又因为AP
平面MDB,OM
平面MDB,
所以PA∥平面MDB. …………6分
(Ⅱ) 解:设NC∩MO=E,由题意得BP=BC=2,且∠CPN=90°.
因为M为PC的中点,所以PC⊥BM,
同理PC⊥DM,故PC⊥平面BMD.
所以直线CN在平面BMD内的射影为直线OM,∠MEC为直线CN与平面BMD所成的角,
又因为OM∥PA,所以∠PNC=∠MEC.
在Rt△CPN中,CP=2,NP=1,所以tan∠PNC=
,
故直线 CN与平面BMD所成角的正切值为2.
【解析】略
科目:高中数学 来源: 题型:
| π |
| 3 |
|
查看答案和解析>>
科目:高中数学 来源: 题型:
(本题满分14分)如图,四边形ABCD为矩形,AD⊥平面ABE,AE=EB=BC=2,
为
上的点,且BF⊥平面ACE.
(1)求证:AE⊥BE;(2)求三棱锥D-AEC的体积;(3)设M在线段AB上,且满足AM=2MB,试在线段CE上确定一点N,使得MN∥平面DAE.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年江苏省高三上学期期中考试数学 题型:解答题
(本题满分14分)已知集合A={x|x2-2x-3≤0,x∈R},B={x|x2-2mx+m2-4≤0,x∈R,m∈R}
(Ⅰ)若A
B=[0,3],求实数m的值
(Ⅱ)若A
CRB,求实数m的取值范围
查看答案和解析>>
科目:高中数学 来源:2010-2011学年福建省高三上学期第三次月考理科数学卷 题型:解答题
(本题满分14分)
已知点
是⊙
:
上的任意一点,过
作
垂直
轴于
,动点
满足
。
(1)求动点
的轨迹方程;
(2)已知点
,在动点
的轨迹上是否存在两个不重合的两点
、
,使
(O是坐标原点),若存在,求出直线
的方程,若不存在,请说明理由。
查看答案和解析>>
科目:高中数学 来源:2014届江西省高一第二学期入学考试数学 题型:解答题
(本题满分14分)已知函数
.
(1)求函数
的定义域;
(2)判断
的奇偶性;
(3)方程
是否有根?如果有根
,请求出一个长度为
的区间
,使![]()
![]()
;如果没有,请说明理由?(注:区间的长度为
).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com