【题目】已知中心在坐标原点
的椭圆
经过点
,且点
为其右焦点.
(Ⅰ)求椭圆
的标准方程;
(Ⅱ)是否存在平行于
的直线
,使得直线
与椭圆
有公共点,且直线
与
的距离等于4?若存在,求出直线
的方程;若不存在,请说明理由.
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
的左右焦点分别为
,过
作垂直于
轴的直线
交椭圆
于
两点,且满足
.
(1)求椭圆
的离心率;
(2)过
作斜率为
的直线
交
于
两点.
为坐标原点,若
的面积为
,求椭圆
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图①所示,四边形
为等腰梯形,
,且
于点
为
的中点.将
沿着
折起至
的位置,得到如图②所示的四棱锥
.
![]()
(1)求证:
平面
;
(2)若平面
平面
,求二面角
的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业准备投入适当的广告费对产品进行促销,在一年内预计销售量Q(万件)与广告费x(万元)之间的函数关系为Q=
(x>1),已知生产该产品的年固定投入为3万元,每生产1万件该产品另需再投入32万元,若每件销售价为“年平均每件生产成本(生产成本不含广告费)的150%”与“年平均每件所占广告费的50%”之和.
(1)试将年利润W(万元)表示为年广告费x(万元)的函数;(年利润=销售收入-成本)
(2)当年广告费为多少万元时,企业的年利润最大?最大年利润为多少万元?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准
(吨)、一位居民的月用水量不超过
的部分按平价收费,超过
的部分按议价收费,为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照
分成9组,制成了如图所示的频率分布直方图.
![]()
(1)求直方图中
的值;
(2)设该市有30万居民,估计全市居民中月均用量不低于3吨的人数,并说明理由;
(3)若该市政府希望使85%的居民每月的用水量不超过标准
(吨),估计
的值,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点
是直线
与椭圆
的一个公共点,
分别为该椭圆的左右焦点,设
取得最小值时椭圆为
.
(I)求椭圆
的方程;
(II)已知
是椭圆
上关于
轴对称的两点,
是椭圆
上异于
的任意一点,直线
分别与
轴交于点
,试判断
是否为定值,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某班同学利用国庆节进行社会实践,对
岁的人群随机抽取
人进行了一次生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念的称为“低硕族”,否则称为“非低碳族”,得到如下统计表和各年龄段人数频率分布直方图:
组数 | 分组 | 低碳族的人数 | 占本组的频率 |
第一组 |
| 120 | 0.6 |
第二组 |
| 195 |
|
第三组 |
| 100 | 0.5 |
第四组 |
|
| 0.4 |
第五组 |
| 30 | 0.3 |
第六组 |
| 15 | 0.3 |
![]()
(1)补全频率分布直方图并求
的值(直接写结果);
(2)从年龄段在
的“低碳族”中采用分层抽样法抽取6人参加户外低碳体验活动,其中选取2人作为领队,求选取的2名领队中至少有1人年龄在
岁的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com