【题目】如图①所示,四边形
为等腰梯形,
,且
于点
为
的中点.将
沿着
折起至
的位置,得到如图②所示的四棱锥
.
![]()
(1)求证:
平面
;
(2)若平面
平面
,求二面角
的余弦值.
【答案】(1)证明见解析;(2)
.
【解析】
试题分析:(1)取
的中点
,连接
,根据中位线
,且
,而
,所以
且
,所以四边形
为平行四边形,所以
,所以
平面
;(2)以点
为原点,
为
轴,
为
轴,
为
轴,建立空间直角坐标系,计算平面
与平面
的法向量,利用两个法向量求得二面角的余弦值为
.
试题解析:
(1)取
的中点
,连接
.
∵
为
的中点,
∴
,且
,
∵图①中四边形
为等腰梯形,
,且
,
∴
,
∴
,
∴四边形
为平行四边形,∴
,
∵
平面
平面
,
∴
平面
![]()
(2)易证
两两垂直,故以点
为原点,
为
轴,
为
轴,
为
轴,建立空间直角坐标系,
∴
,
所以
,设平面
的法向量为
.
则
令
,得
,
显然
为平面
的一个法向量,
所以
,
由图知平面
与平面
所成的二面角为锐角,所以所求的余弦值为
.
科目:高中数学 来源: 题型:
【题目】某公司生产一批
产品需要原材料500吨,每吨原材料可创造利润12万元,该公司通过设备升级,生产这批
产品所需原材料减少了
吨,且每吨原材料创造的利润提高
;若将少用的
吨原材料全部用于生产公司新开发的
产品,每吨原材料创造的利润为
万元
.
(1)若设备升级后生产这批
产品的利润不低于原来生产该批
产品的利润,求
的取值范围;
(2)若生产这批
产品的利润始终不高于设备升级后生产这批
产品的利润,求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知曲线![]()
(1)化
的方程为普通方程,并说明它们分别表示什么曲线;
(2)若
上的点P对应的参数为
,Q为
上的动点,求PQ的中点M到直线![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知过点
的直线
的参数方程是
(
为参数).以平面直角坐标系的原点为极点,
轴的正半轴为极轴,建立极坐标系,曲线
的极坐标方程式为
.
(Ⅰ)求直线
的普通方程和曲线
的直角坐标方程;
(Ⅱ)若直线
与曲线
交于两点
,且
,求实数
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】等比数列{an}的公比为q,其前n项的积为Tn,并且满足条件a1>1,a49a50-1>0,(a49-1)(a50-1)<0.给出下列结论:
①0<q<1;②a1a99-1<0;③T49的值是Tn中最大的;④使Tn>1成立的最大自然数n等于98.
其中所有正确结论的序号是____________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知中心在坐标原点
的椭圆
经过点
,且点
为其右焦点.
(Ⅰ)求椭圆
的标准方程;
(Ⅱ)是否存在平行于
的直线
,使得直线
与椭圆
有公共点,且直线
与
的距离等于4?若存在,求出直线
的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列
的前
项和为
且满足
,数列
中,
对任意正整数![]()
(1)求数列
的通项公式;
(2)是否存在实数
,使得数列
是等比数列?若存在,请求出实数
及公比
的值,若不存在,请说明理由;
(3)求证:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆
与直线
相切.
(1)求圆
的方程;
(2)过点
的直线
截圆
所得弦长为
,求直线
的方程;
(3)设圆
与
轴的负半抽的交点为
,过点
作两条斜率分别为
的直线交圆
于
两点,且
,证明:直线
过定点,并求出该定点坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com