【题目】设函数f(x)=a﹣
(a∈R).
(1)请你确定a的值,使f(x)为奇函数;
(2)用单调性定义证明,无论a为何值,f(x)为增函数.
【答案】
(1)解:∵函数f(x)是R上的奇函数,
∴f(0)=a﹣
=0,
∴a=1;
(2)解:证明:任取:x1<x2∈R,
∴f(x1)﹣f(x2)=a﹣
﹣a+
=2 ![]()
∵x1<x2,
∴
,
又
>0,
,
∴f(x1)﹣f(x2)<0,
即f(x1)<f(x2),
∴f(x)在R上的单调递增
【解析】(1)根据函数奇偶性的定义进行判断即可.(2)根函数单调性的定义进行证明即可.
【考点精析】掌握函数单调性的判断方法和函数的奇偶性是解答本题的根本,需要知道单调性的判定法:①设x1,x2是所研究区间内任两个自变量,且x1<x2;②判定f(x1)与f(x2)的大小;③作差比较或作商比较;偶函数的图象关于y轴对称;奇函数的图象关于原点对称.
科目:高中数学 来源: 题型:
【题目】已知函数
的最小正周期为
.
(1)求函数
的单调增区间;
(2)将函数
的图象向左平移
个单位,再向上平移1个单位,得到函数
的图象,若
在
上至少含有10个零点,求
的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若在曲线f(x,y)=0(或y=f(x))上两个不同点处的切线重合,则称这条切线为曲线f(x,y)=0或y=f(x)的“自公切线”.下列方程:
①x2﹣y2=1;
②y=x2﹣|x|;
③y=3sinx+4cosx;
④|x|+1= ![]()
对应的曲线中存在“自公切线”的有( )
A.①③
B.①④
C.②③
D.②④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)=
x3﹣x2+ax+m,其中a>0,如果存在实数t,使f′(t)<0,则f′(t+2)f′(
)的值( )
A.必为正数
B.必为负数
C.必为非负
D.必为非正
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,已知曲线
的参数方程为
(
,
为参数).以坐标原点
为极点,
轴的正半轴为极轴,取相同的长度单位建立极坐标系,直线
的极坐标方程为
.
(1)当
时,求曲线
上的点到直线
的距离的最大值;
(2)若曲线
上的所有点都在直线
的下方,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥
中,底面
为梯形,
底面
,
,
,
,
.
![]()
(1)求证:平面
平面
;
(2)设
为
上的一点,满足
,若直线
与平面
所成角的正切值为
,求二面角
的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知四棱锥P﹣ABCD的底面是矩形,侧面PAB是正三角形,且平面PAB⊥平面ABCD,E是PA的中点,AC与BD的交点为M. ![]()
(1)求证:PC∥平面EBD;
(2)求证:BE⊥平面AED.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com