已知函数
,![]()
.
(Ⅰ)若
,求函数
在区间
上的最值;
(Ⅱ)若
恒成立,求
的取值范围.
注:
是自然对数的底数
(Ⅰ)
;(Ⅱ)
.
解析试题分析:(Ⅰ)将
代入函数解析式,并将函数
解析式中的绝对值去掉,写成分段函数,并将定义域
分为两部分:
与
,利用导数分别求出函数
在区间
与
上的最大值与最小值,然后进行比较,最终确定函数
在区间
上的最大值与最小值;(Ⅱ)利用参数分离法将不等式进行转化,借助“大于最大值,小于最小值”的思想求参数
的取值范围,不过在去绝对值符号的时候要对自变量
的范围进行取舍(主要是自变量
的范围决定
的符号).
试题解析:(Ⅰ) 若
,则
.
当
时,
,
,
所以函数
在
上单调递增;
当
时,
,
.
所以函数
在区间
上单调递减,
所以
在区间
上有最小值
,又因为
,
,而
,
所以
在区间
上有最大值
.
(Ⅱ)函数
的定义域为
.
由
,得
. (*)
(ⅰ)当
时,
,
,
不等式(*)恒成立,所以![]()
;
(ⅱ)当
时,
①当
时,由
得
,即
,
现令
, 则
,
因为
,所以
,故
在
上单调递增,
从而
的最小值为
,因为
恒成立等价于
,
所以
;
②当
时,
的最小值为
,而
,显然不满足题意.
综上可得,满足条件的
的取值范围是
.
考点:利用导数求函数的最值、分段函数、参数分离法
科目:高中数学 来源: 题型:解答题
(本小题13分)已知函数![]()
(1)若实数
求函数
在
上的极值;
(2)记函数
,设函数
的图像
与
轴交于
点,曲线
在
点处的切线与两坐标轴所围成图形的面积为
则当
时,求
的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数
在点
处的切线方程是x+ y-l=0,其中e为自然对数的底数,函数g(x)=1nx- cx+ 1+ c(c>0),对一切x∈(0,+
)均有
恒成立.
(Ⅰ)求a,b,c的值;
(Ⅱ)求证:
.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设函数F(x )=x2+aln(x+1)
(I)若函数y=f(x)在区间[1,+∞)上是单调递增函数,求实数a的取值范围;
(II)若函数y=f(x)有两个极值点x1,x2且
,求证:
.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设函数
(Ⅰ)若函数
在
上单调递减,在区间
单调递增,求
的值;
(Ⅱ)若函数
在
上有两个不同的极值点,求
的取值范围;
(Ⅲ)若方程
有且只有三个不同的实根,求
的取值范围。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com