在平面直角坐标系
中,动点
满足:点
到定点
与到
轴的距离之差为
.记动点
的轨迹为曲线
.
(1)求曲线
的轨迹方程;
(2)过点
的直线交曲线
于
、
两点,过点
和原点
的直线交直线
于点
,求证:直线
平行于
轴.
科目:高中数学 来源: 题型:解答题
在平面直角坐标系xOy中,过点A(-2,-1)椭圆C∶
=1(a>b>0)的左焦点为F,短轴端点为B1、B2,
=2b2.
(1)求a、b的值;
(2)过点A的直线l与椭圆C的另一交点为Q,与y轴的交点为R.过原点O且平行于l的直线与椭圆的一个交点为P.若AQ·AR=3OP2,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
己知椭圆C:
(a>b>0)的右焦点为F(1,0),点A(2,0)在椭圆C上,过F点的直线
与椭圆C交于不同两点
.
(1)求椭圆C的方程;
(2)设直线
斜率为1,求线段
的长;
(3)设线段
的垂直平分线交
轴于点P(0,y0),求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C1:
=1,椭圆C2以C1的短轴为长轴,且与C1有相同的离心率.
(1)求椭圆C2的方程;
(2)设直线l与椭圆C2相交于不同的两点A、B,已知A点的坐标为(-2,0),点Q(0,y0)在线段AB的垂直平分线上,且
=4,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知F1,F2分别为椭圆C1:
=1(a>b>0)的上下焦点,其中F1是抛物线C2:x2=4y的焦点,点M是C1与C2在第二象限的交点,且|MF1|=
.![]()
(1)试求椭圆C1的方程;
(2)与圆x2+(y+1)2=1相切的直线l:y=k(x+t)(t≠0)交椭圆于A,B两点,若椭圆上一点P满足
,求实数λ的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知直线l:y=x+
,圆O:x2+y2=5,椭圆E:
=1(a>b>0)的离心率e=
,直线l被圆O截得的弦长与椭圆的短轴长相等.
(1)求椭圆E的方程;
(2)过圆O上任意一点P作椭圆E的两条切线,若切线都存在斜率,求证:两切线的斜率之积为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知圆![]()
,若椭圆
的右顶点为圆
的圆心,离心率为
.
(1)求椭圆C的方程;
(2)若存在直线
,使得直线
与椭圆
分别交于
两点,与圆
分别交于
两点,点
在线段
上,且
,求圆
的半径
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知线段MN的两个端点M、N分别在
轴、
轴上滑动,且
,点P在线段MN上,满足![]()
,记点P的轨迹为曲线W.
(1)求曲线W的方程,并讨论W的形状与
的值的关系;
(2)当
时,设A、B是曲线W与
轴、
轴的正半轴的交点,过原点的直线与曲线W交于C、D两点,其中C在第一象限,求四边形ACBD面积的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com