【题目】某商场销售某种品牌的空调器,每周周初购进一定数量的空调器,商场没销售一台空调器可获利500元,若供大于求,则每台多余的空调器需交保管费100元;若供不应求,则可从其他商店调剂供应,此时每台空调器仅获利润200元.
(Ⅰ)若该商场周初购进20台空调器,求当周的利润(单位:元)关于当周需求量
(单位:台,
)的函数解析式
;
(Ⅱ)该商场记录了去年夏天(共10周)空调器需求量(单位:台),整理得下表:
![]()
以10周记录的各需求量的频率作为各需求量发生的概率,若商场周初购进20台空调器,
表示当周的利润(单位:元),求
的分布及数学期望.
科目:高中数学 来源: 题型:
【题目】如图1,在高为2的梯形
中,
,
,
,过
、
分别作
,
,垂足分别为
、
。已知
,将梯形
沿
、
同侧折起,得空间几何体
,如图2。
![]()
(1)若
,证明:
;
(2)若
,证明:
;
(3)在(1),(2)的条件下,求三棱锥
的体积。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校高三共有2000名学生参加广安市联考,现随机抽取100名学生的成绩(单位:分),并列成如下表所示的频数分布表:
组别 |
|
|
|
|
|
|
频数 | 6 | 18 | 28 | 26 | 17 | 5 |
(1)试估计该年级成绩
分的学生人数;
(2)已知样本中成绩在
中的6名学生中,有4名男生,2名女生,现从中选2人进行调研,求恰好选中一名男生一名女生的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2017年天猫五一活动结束后,某地区研究人员为了研究该地区在五一活动中消费超过3000元的人群的年龄状况,随机在当地消费超过3000元的群众中抽取了500人作调查,所得概率分布直方图如图所示:记年龄在
,
,
对应的小矩形的面积分别是
,且
.
![]()
(1)以频率作为概率,若该地区五一消费超过3000元的有30000人,试估计该地区在五一活动中消费超过3000元且年龄在
的人数;
(2)计算在五一活动中消费超过3000元的消费者的平均年龄;
(3)若按照分层抽样,从年龄在
,
的人群中共抽取7人,再从这7人中随机抽取2人作深入调查,求至少有1人的年龄在
内的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列
的前n项和为Sn,点
在直线
上,数列
为等差数列,且
,前9项和为153.
(1)求数列
、
的通项公式;
(2)设
,数列
的前n项和为
,求使不等式
对一切的
都成立的最大整数k.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点P(2,0),且圆C:x2+y2﹣6x+4y+4=0.
(Ⅰ)当直线
过点P且与圆心C的距离为1时,求直线
的方程;
(Ⅱ)设过点P的直线与圆C交于A、B两点,若|AB|=4,求以线段AB为直径的圆的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com