【题目】如图1,在高为2的梯形
中,
,
,
,过
、
分别作
,
,垂足分别为
、
。已知
,将梯形
沿
、
同侧折起,得空间几何体
,如图2。
![]()
(1)若
,证明:
;
(2)若
,证明:
;
(3)在(1),(2)的条件下,求三棱锥
的体积。
科目:高中数学 来源: 题型:
【题目】某工厂为了对新研发的产品进行合理定价,将该产品按事先拟定的价格进行试销,得到一组检测数据
(
…
)如下表所示:
试销价格
| 4 | 5 | 6 | 7 |
| 9 |
产品销量
|
| 84 | 83 | 80 | 75 | 68 |
已知变量
具有线性负相关关系,且
,
,现有甲、乙、丙三位同学通过计算求得其回归直线方程分别为:甲
,乙
,丙
,其中有且仅有一位同学的计算结果是正确的( ).
(1)试判断谁的计算结果正确?并求出
的值;
(2)若由线性回归方程得到的估计数据与检测数据的误差不超过1,则该检测数据是“理想数据”,现从检测数据中随机抽取2个,
为“理想数据”的个数,求随机变量
的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知正方体
,则下列说法不正确的是( )
A.若点
在直线
上运动时,三棱锥
的体积不变
B.若点
是平面
上到点
和
距离相等的点,则
点的轨迹是过
点的直线
C.若点
在直线
上运动时,直线
与平面
所成角的大小不变
D.若点
在直线
上运动时,二面角
的大小不变
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若四面体
的三组对棱分别相等,即![]()
给出下列结论:
①四面体
每个面的面积相等;
②从四面体
每个顶点出发的三条棱两两夹角之和大于
而小于
;
③连结四面体
每组对棱中点的线段相互垂直平分;
④从四面体
每个顶点出发的三条棱的长可作为一个三角形的三边长;
其中正确结论的序号是__________。(写出所有正确结论的序号)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某商场销售某种品牌的空调器,每周周初购进一定数量的空调器,商场没销售一台空调器可获利500元,若供大于求,则每台多余的空调器需交保管费100元;若供不应求,则可从其他商店调剂供应,此时每台空调器仅获利润200元.
(Ⅰ)若该商场周初购进20台空调器,求当周的利润(单位:元)关于当周需求量
(单位:台,
)的函数解析式
;
(Ⅱ)该商场记录了去年夏天(共10周)空调器需求量(单位:台),整理得下表:
![]()
以10周记录的各需求量的频率作为各需求量发生的概率,若商场周初购进20台空调器,
表示当周的利润(单位:元),求
的分布及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,抛物线
:
与双曲线
:
(
,
)有公共焦点
,点
是曲线
,
在在第一象限的交点,且
.
![]()
(1)求双曲线
的方程;
(2)以
为圆心的圆
与双曲线的一条渐进线相切,圆
.已知点
,过点
作互相垂直分别与圆
、圆
相交的直线
和
,设
被圆
解得的弦长为
,
被圆
截得的弦长为
.试探索
是否为定值?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,等边三角形ABC的边长为4,M,N分别为AB,AC的中点,沿MN将△AMN折起,使点A到A′的位置.若平面A′MN与平面MNCB垂直,则四棱锥A′MNCB的体积为________.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com