【题目】某小型企业甲产品生产的投入成本
(单位:万元)与产品销售收入
(单位:万元)存在较好的线性关系,下表记录了最近5次产品的相关数据.
| 7 | 10 | 11 | 15 | 17 |
| 19 | 22 | 25 | 30 | 34 |
(1)求
关于
的线性回归方程;
(2)根据(1)中的回归方程,判断该企业甲产品投入成本20万元的毛利率更大还是投入成本24万元的毛利率更大(
)?
相关公式:
,
.
【答案】(1)
.(2)投入成本20万元的毛利率更大.
【解析】试题分析:(1)由回归公式,解得线性回归方程为
;(2)当
时,
,对应的毛利率为
,当
时,
,对应的毛利率为
,故投入成本20万元的毛利率更大。
试题解析:
(1)
,
,
![]()
,
,故
关于
的线性回归方程为
.
(2)当
时,
,对应的毛利率为
,
当
时,
,对应的毛利率为
,
故投入成本20万元的毛利率更大.
【题型】解答题
【结束】
21
【题目】已知椭圆
的一个焦点为
.设椭圆
的焦点恰为椭圆
短轴的顶点,且椭圆
过点
.
(1)求
的方程及离心率;
(2)若直线
与椭圆
交于
两点,求
.
科目:高中数学 来源: 题型:
【题目】对于函数
有以下说法:
①
是
的极值点.
②当
时,
在
上是减函数.
③
的图像与
处的切线必相交于另一点.
④当
时,
在
上是减函数.
其中说法正确的序号是_______________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
是定义在
上的偶函数,且当
时,
.
![]()
(1)已画出函数
在
轴左侧的图像,如图所示,请补出完整函数
的图像,并根据图像写出函数
的增区间;
⑵写出函数
的解析式和值域.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将函数
的图象向左平移
个单位,再向下平移4个单位,得到函数g(x)的图象,则函数f(x)的图象与函数g(x)的图象( )
A.关于点(﹣2,0)对称
B.关于点(0,﹣2)对称
C.关于直线x=﹣2对称
D.关于直线x=0对称
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在三棱锥A﹣BCD中,侧棱AB,AC,AD两两垂直,△ABC、△ACD、△ABD的面积分别为
、
、2
,则三棱锥A﹣BCD的外接球的体积为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地区10名健康儿童头发和血液中的硒含量(单位:μg/ml)如下表所示:
血硒x | 74 | 66 | 88 | 69 | 91 | 73 | 66 | 96 | 58 | 73 |
发硒y | 13 | 10 | 13 | 11 | 16 | 9 | 7 | 14 | 5 | 10 |
(1)画出散点图;
(2)求回归方程;
(3)若某名健康儿童的血液中的硒含量为94 μg/ml,预测他的发硒含量.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆
:
(其中
为圆心)上的每一点横坐标不变,纵坐标变为原来的一半,得到曲线
.
(1)求曲线
的方程;
(2)若点
为曲线
上一点,过点
作曲线
的切线交圆
于不同的两点
(其中
在
的右侧),已知点
.求四边形
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,正方体
的棱长为
,
为
的中点,
为线段
上的动点,过点
,
,
的平面截该正方体所得的截面为
,则下列命题正确的是__________(写出所有正确命题的编号).
![]()
①当
时,
为四边形;②当
时,
为等腰梯形;
③当
时,
与
的交点
满足
;
④当
时,
为五边形;
⑤当
时,
的面积为
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com