精英家教网 > 高中数学 > 题目详情
已知数列{an}的前n项和Sn=n (2n-1),(n∈N*)
(1)证明数列{an}为等差数列;
(2)设数列{bn} 满足bn=S1+
S2
2
+
S3
3
+…+
Sn
n
(n∈N*),试判定:是否存在自然数n,使得bn=900,若存在,求出n的值;若不存在,说明理由.
(1)当n≥2时,an=Sn-Sn-1=n(2n-1)-(n-1)(2n-3)=4n-3,
当n=1时,a1=S1=1,适合.∴an=4n-3,
∵an-an-1=4(n≥2),∴an为等差数列.
(2)由题意知,
Sn
n
=2n-1

∴bn=S1+
S2
2
+
S3
3
++
Sn
n
=1+3+5+7++(2n-1)=n2

由n2=900,得n=30,即存在满足条件的自然数,且n=30.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

19、已知数列{an}的前n项和Sn=n2(n∈N*),数列{bn}为等比数列,且满足b1=a1,2b3=b4
(1)求数列{an},{bn}的通项公式;
(2)求数列{anbn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于(  )
A、16B、8C、4D、不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=n2+n+1,那么它的通项公式为an=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

13、已知数列{an}的前n项和为Sn=3n+a,若{an}为等比数列,则实数a的值为
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn满足Sn+1=kSn+2,又a1=2,a2=1.
(1)求k的值及通项公式an
(2)求Sn

查看答案和解析>>

同步练习册答案