【题目】已知数列
为等差数列,
,
.
(1) 求数列
的通项公式;
(2)求数列
的前n项和
.
【答案】(1)
;(2)
.
【解析】试题分析:利用等差数列通项公式列出方程组,求出首项和公差,由此能求出数列
的
通项公式;(2)由(1)可得
,利用错位相减法及等比数列前
项和公式能求出数列
的前n项和
.
试题解析: (1)设数列
的公差为
,依题意得方程组
解得
.
所以
的通项公式为
.
(2)由(1)可得
,
-得![]()
所以
.
【 方法点睛】本题主要考查等差数列的通项公式、等比数列的求和公式以及错位相减法求数列的前
项和,属于中档题.一般地,如果数列
是等差数列,
是等比数列,求数列
的前
项和时,可采用“错位相减法”求和,一般是和式两边同乘以等比数列
的公比,然后作差求解, 在写出“
”
与“
” 的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“
”的表达式.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=
sinωx+cosωx(ω>0)的图象与直线y=﹣2的两个相邻公共点之间的距离等于π,则f(x)的单调递减区间是( )
A.[kπ+
,kπ+
],k∈z
B.[kπ﹣
,kπ+
],k∈z
C.[2kπ+
,2kπ+
],k∈z
D.[2kπ﹣
,2kπ+
],k∈z
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
定义在
上且满足下列两个条件:
①对任意
都有
;
②当
时,有
,
(1)求
,并证明函数
在
上是奇函数;
(2)验证函数
是否满足这些条件;
(3)若
,试求函数
的零点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】 在平行四边形ABCD中,A(1,1),
=(6,0),点M是线段AB的中点,线段CM与BD交于点P.(1) 若
=(3,5),求点C的坐标;(2) 当|
|=|
|时,求点P的轨迹.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(1)已知
:“直线
与圆
相交”;
:“
有一正根和一负根”.若
为真,
为真,求
的取值范围.
(2)已知椭圆
:
与圆
:
,双曲线
与椭圆
有相同的焦点,它的两条渐近线恰好与圆
相切.求双曲线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙两同学利用暑假到某县进行社会实践,对该县的养鸡场连续六年来的规模进行调查研究,得到如下两个不同的信息图:
![]()
(A)图表明:从第1年平均每个养鸡场出产1万只鸡上升到第6年平均每个养鸡场出产2万只鸡:
(B)图表明:由第1年养鸡场个数30个减少到第6年的10个.
请你根据提供的信息解答下列问题:
(1)第二年的养鸡场的个数及全县出产鸡的总只数各是多少?
(2)哪一年的规模最大?为什么?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com