如图,已知平面内一动点
到两个定点
、
的距离之和为
,线段
的长为![]()
.![]()
(1)求动点
的轨迹
;
(2)当
时,过点
作直线
与轨迹
交于
、
两点,且点
在线段
的上方,线段
的垂直平分线为![]()
①求
的面积的最大值;
②轨迹
上是否存在除
、
外的两点
、
关于直线
对称,请说明理由.
(1)参考解析;(2)①
;②参考解析
解析试题分析:(1)由于c的大小没确定,所以点A的轨迹,根据c的大小有三种情况.
(2)①由
可得点A的轨迹方程为椭圆,求
的面积的最大值即求出点A到直线
距离的最大值.即点A在椭圆的上顶点上即可.本小题通过建立三角函数同样可以求得三角形面积最大时的情况.
②当
时,显然存在除
、
外的两点
、
关于直线
对称.当直线AC不垂直于
时,不存在除
、
外的两点
、
关于直线
对称.通过假设存在,利用点差法即可得到,
.由于H,M分别是两条弦的中点,并且都被直线m平分.所以
.由
.所以不存在这样的直线.
试题解析:(1)当
即
时,轨迹是以
、
为焦点的椭圆3分
当
时,轨迹是线段
4分
当
时,轨迹不存在5分
(2)以线段
的中点为坐标原点,以
所在直线为
轴建立平面直角坐标系,
可得轨迹
的方程为
7分
①解法1:设
表示点
到线段
的距离
,8分
要使
的面积有最大值,只要
有最大值
当点
与椭圆的上顶点重合时,![]()
的最大值为
10分
解法2:在椭圆
中,设
,记![]()
点
在椭圆上,
由椭圆的定义得:![]()
![]()
在
中,由余弦定理得:![]()
配方,得:![]()
从而![]()
![]()
得
8分
根据椭圆的对称性,当
最大时,
最大
当点
与椭圆的上顶点重合时,![]()
最大值为
10分
②结论:当
时,显然存在除
、
外的两点
、
关于直线
对
科目:高中数学 来源: 题型:解答题
已知
、
为椭圆
的左右焦点,点
为其上一点,且有![]()
.
(1)求椭圆
的标准方程;
(2)过
的直线
与椭圆
交于
、
两点,过
与
平行的直线
与椭圆
交于
、
两点,求四边形
的面积
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设椭圆
的中心和抛物线
的顶点均为原点
,
、
的焦点均在
轴上,过
的焦点F作直线
,与
交于A、B两点,在
、
上各取两个点,将其坐标记录于下表中:![]()
![]()
(1)求
,
的标准方程;
(2)若
与
交于C、D两点,
为
的左焦点,求
的最小值;
(3)点
是
上的两点,且
,求证:
为定值;反之,当
为此定值时,
是否成立?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设
:
的准线与
轴交于点
,焦点为
;椭圆
以
为焦点,离心率
.设
是
的一个交点.![]()
(1)当
时,求椭圆
的方程.
(2)在(1)的条件下,直线
过
的右焦点
,与
交于
两点,且
等于
的周长,求
的方程.
(3)求所有正实数
,使得
的边长是连续正整数.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C:
+
=1
的离心率为
,左焦点为F(-1,0),
(1)设A,B分别为椭圆的左、右顶点,过点F且斜率为k的直线L与椭圆C交于M,N两点,若
,求直线L的方程;
(2)椭圆C上是否存在三点P,E,G,使得S△OPE=S△OPG=S△OEG=
?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
(a>b>0)的离心率为
,且过点(
).
(1)求椭圆E的方程;
(2)设直线l:y=kx+t与圆
(1<R<2)相切于点A,且l与椭圆E只有一个公共点B.
①求证:
;
②当R为何值时,
取得最大值?并求出最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
椭圆c:
(a>b>0)的离心率为
,过其右焦点F与长轴垂直的弦长为1,
(1)求椭圆C的方程;
(2)设椭圆C的左右顶点分别为A,B,点P是直线x=1上的动点,直线PA与椭圆的另一个交点为M,直线PB与椭圆的另一个交点为N,求证:直线MN经过一定点.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线
的焦点为
,点
为抛物线上的一点,其纵坐标为
,
.
(1)求抛物线的方程;
(2)设
为抛物线上不同于
的两点,且
,过
两点分别作抛物线的切线,记两切线的交点为
,求
的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
的内切圆与三边
的切点分别为
,已知
,内切圆圆心
,设点A的轨迹为R. ![]()
(1)求R的方程;
(2)过点C的动直线m交曲线R于不同的两点M,N,问在x轴上是否存在一定点Q(Q不与C重合),使
恒成立,若求出Q点的坐标,若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com