已知椭圆
(a>b>0)的离心率为
,且过点(
).
(1)求椭圆E的方程;
(2)设直线l:y=kx+t与圆
(1<R<2)相切于点A,且l与椭圆E只有一个公共点B.
①求证:
;
②当R为何值时,
取得最大值?并求出最大值.
(1)
;(2)①证明见解析;②
时,
取得最大值为1.
解析试题分析:(1)椭圆的离心率为
,又椭圆过已知点,即
,再加上
,联立可求得
;(2)直线与圆及椭圆都相切,因此可以把直线方程与椭圆方程(或圆方程)联立方程组,此方程组只有一解,由此可得到题中参数的关系式,当然直线与圆相切,可利用圆心到直线的距离等于圆的半径来列式,得到的两个等式中消去参数
即可证得①式;而②要求
的最大值,可先求出
,注意到
,因此
,这里设
,由①中的方程(组)可求得
,最终把
用
表示,
,利用不等式知识就可求得最大值.
试题解析:(1)椭圆E的方程为
4分
(2)①因为直线
与圆C:
相切于A,得
,
即
① 5分
又因为
与椭圆E只有一个公共点B,
由
得
,且此方程有唯一解.
则
即![]()
②由①②,得
8分
②设
,由
得![]()
由韦达定理,![]()
∵
点在椭圆上,∴![]()
∴
10分
在直角三角形OAB中,![]()
![]()
∴
12分
考点:椭圆的标准方程,直线与圆相切,直线与椭圆相切.
科目:高中数学 来源: 题型:解答题
给定椭圆
.称圆心在原点O,半径为
的圆是椭圆C的“准圆”.若椭圆C的一个焦点为
,其短轴上的一个端点到F的距离为
.
(1)求椭圆C的方程和其“准圆”方程;
(2)点P是椭圆C的“准圆”上的一个动点,过动点P作直线
,使得
与椭圆C都只有一个交点,试判断
是否垂直?并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知椭圆
的左、右焦点分别为
,其上顶点为
已知
是边长为
的正三角形.![]()
(1)求椭圆
的方程;
(2)过点
任作一动直线
交椭圆
于
两点,记
.若在线段
上取一点
,使得
,当直线
运动时,点
在某一定直线上运动,求出该定直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C:
(a>b>0),过点(0,1),且离心率为
.
(1)求椭圆C的方程;
(2)A,B为椭圆C的左右顶点,直线l:x=2
与x轴交于点D,点P是椭圆C上异于A,B的动点,直线AP,BP分别交直线l于E,F两点.证明:当点P在椭圆C上运动时,
恒为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知平面内一动点
到两个定点
、
的距离之和为
,线段
的长为![]()
.![]()
(1)求动点
的轨迹
;
(2)当
时,过点
作直线
与轨迹
交于
、
两点,且点
在线段
的上方,线段
的垂直平分线为![]()
①求
的面积的最大值;
②轨迹
上是否存在除
、
外的两点
、
关于直线
对称,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知点
在抛物线
上,直线
(
,且
)与抛物线
,相交于
、
两点,直线
、
分别交直线
于点
、
.
(1)求
的值;
(2)若
,求直线
的方程;
(3)试判断以线段
为直径的圆是否恒过两个定点?若是,求这两个定点的坐标;若不是,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线
,直线
,
是抛物线的焦点。![]()
(1)在抛物线上求一点
,使点
到直线
的距离最小;
(2)如图,过点
作直线交抛物线于A、B两点.
①若直线AB的倾斜角为
,求弦AB的长度;
②若直线AO、BO分别交直线
于
两点,求
的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在平面直角坐标系xOy中,设曲线C1:
所围成的封闭图形的面积为
,曲线C1上的点到原点O的最短距离为
.以曲线C1与坐标轴的交点为顶点的椭圆记为C2.
(1)求椭圆C2的标准方程;
(2)设AB是过椭圆C2中心O的任意弦,l是线段AB的垂直平分线.M是l上的点(与O不重合).
①若MO=2OA,当点A在椭圆C2上运动时,求点M的轨迹方程;
②若M是l与椭圆C2的交点,求△AMB的面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知圆
,若椭圆
的右顶点为圆
的圆心,离心率为
.
(1)求椭圆C的方程;
(2)若存在直线
,使得直线
与椭圆
分别交于
两点,与圆
分别交于
两点,点
在线段
上,且
,求圆
的半径
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com