精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=ax2+bx和g(x)=lnx. (Ⅰ) 若a=b=1,求证:f(x)的图象在g(x)图象的上方;
(Ⅱ) 若f(x)和g(x)的图象有公共点P,且在点P处的切线相同,求a的取值范围.

【答案】解:(Ⅰ)证明:若a=b=1,即有f(x)=x2+x,

令h(x)=f(x)﹣g(x)=x2+x﹣lnx,h′(x)=2x+1﹣ =

= ,x>0,

当x> 时,h′(x)>0,h(x)递增;当0<x< 时,h′(x)<0,h(x)递减.

可得h(x)在x= 处取得极小值,且为最小值,且h( )= + ﹣ln >0,

即有h(x)>0恒成立,则f(x)的图象在g(x)图象的上方;

(Ⅱ)设P的坐标为(m,n),

f(x)=ax2+bx的导数为f′(x)=2ax+b,

g(x)=lnx的导数为g′(x)=

可得2am+b= ,且n=am2+bm=lnm,

消去b,可得am2+1﹣2am2=lnm,

可得a= (m>0),

令u(m)= (m>0),

则u′(m)=

当m>e 时,u′(m)>0,u(m)递增;当0<m<e 时,u′(m)<0,u(m)递减.

可得u(m)在m=e 处取得极小值,且为最小值,且u(e )= =﹣

则a≥﹣

故a的取值范围是[﹣ ,+∞)


【解析】(Ⅰ)令h(x)=f(x)﹣g(x)=x2+x﹣lnx,求出导数和单调区间,可得极小值,且为最小值,判断最小值大于0,即可得证;(Ⅱ)设P的坐标为(m,n),分别求出f(x),g(x)的导数,可得切线的斜率,即有2am+b= ,且n=am2+bm=lnm,消去b,可得a= (m>0),令u(m)= (m>0),求出导数和单调区间、极值和最值,即可得到所求范围.
【考点精析】关于本题考查的函数的最大(小)值与导数,需要了解求函数上的最大值与最小值的步骤:(1)求函数内的极值;(2)将函数的各极值与端点处的函数值比较,其中最大的是一个最大值,最小的是最小值才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,BD是正方形ABCD的对角线,弧的圆心是A,半径为AB,正方形ABCD以AB为轴旋转,求图中Ⅰ,Ⅱ,Ⅲ三部分旋转所得旋转体的体积之比.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)=ln(1+x)﹣x﹣ax2
(1)当x=1时,f(x)取到极值,求a的值;
(2)当a满足什么条件时,f(x)在区间 上有单调递增的区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某数学教师对所任教的两个班级各抽取20名学生进行测试,分数分布如表,若成绩120分以上(含120分)为优秀.

分数区间

甲班频率

乙班频率

[0,30)

0.1

0.2

[30,60)

0.2

0.2

[60,90)

0.3

0.3

[90,120)

0.2

0.2

[120,150]

0.2

0.1

优秀

不优秀

总计

甲班

乙班

总计

k0

2.072

2.706

3.841

5.024

6.635

7.879

10.828

P(K2≥k0

0.15

0.10

0.05

0.025

0.010

0.005

0.001

(Ⅰ)求从乙班参加测试的90分以上(含90分)的同学中,随机任取2名同学,恰有1人为优秀的概率;
(Ⅱ)根据以上数据完成上面的2×2列联表:在犯错概率小于0.1的前提下,你是否有足够的把握认为学生的数学成绩是否优秀与班级有关?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂2万元设计了某款式的服装,根据经验,每生产1百套该款式服装的成本为1万元,每生产(百套)的销售额(单位:万元).

(1)若生产6百套此款服装,求该厂获得的利润;

(2)该厂至少生产多少套此款式服装才可以不亏本?

(3)试确定该厂生产多少套此款式服装可使利润最大,并求最大利润.(注:利润=销售额-成本,其中成本=设计费+生产成本)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在三棱柱ABC﹣A1B1C1中,侧棱A1A⊥底面ABC,AC=1,AA1=2,∠BAC=90°,若直线AB1与直线A1C的夹角的余弦值是 ,则棱AB的长度是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P﹣ABCD的底面ABCD为矩形,PA⊥平面ABCD,点E是棱PD的中点,点F是PC的中点. (Ⅰ)证明:PB∥平面AEC;
(Ⅱ)若底面ABCD为正方形, ,求二面角C﹣AF﹣D大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等腰梯形中(如图1), 边上一点,且沿折起,使平面平面如图2.

(1)证明:平面平面

(2)试在棱上确定一点使截面把几何体分成的两部分.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四棱锥的底面为等腰梯形,AB∥CD,AC⊥BD,垂足为H,PH是四棱锥的高,E为AD的中点.

1证明:PE⊥BC;

2若∠APB=∠ADB=60°,求直线PA与平面PEH所成角的正弦值.

查看答案和解析>>

同步练习册答案