精英家教网 > 高中数学 > 题目详情

【题目】如图,四棱锥P﹣ABCD的底面ABCD为矩形,PA⊥平面ABCD,点E是棱PD的中点,点F是PC的中点. (Ⅰ)证明:PB∥平面AEC;
(Ⅱ)若底面ABCD为正方形, ,求二面角C﹣AF﹣D大小.

【答案】证明:(Ⅰ)连接BD,设AC∩BD=O,连结OE,

∵四边形ABCD为矩形,∴O是BD的中点,

∵点E是棱PD的中点,∴PB∥EO,

又PB平面AEC,EO平面AEC,

∴PB∥平面AEC.

(Ⅱ)由题可知AB,AD,AP两两垂直,

分别以 的方向为坐标轴方向建立空间直角坐标系.

设由 可得AP=AB,

于是可令AP=AB=AD=2,则

A(0,0,0),B(2,0,0),C(2,2,0),D(0,2,0),P(0,0,2),E(0,1,1),F(1,1,1)

设平面CAF的一个法向量为 .由于

,解得x=﹣1,所以

∵y轴平面DAF,∴设平面DAF的一个法向量为

,∴ ,解得z=﹣1,

.∴二面角C﹣AF﹣D的大小为60°.


【解析】(Ⅰ)连接BD,设AC∩BD=O,连结OE,推导出PB∥EO,由此能证明PB∥平面AEC.(Ⅱ)分别以 的方向为坐标轴方向建立空间直角坐标系,利用向量法能求出二面角C﹣AF﹣D的大小.
【考点精析】关于本题考查的直线与平面平行的判定,需要了解平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行;简记为:线线平行,则线面平行才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知定义在R上的可导函数f(x)的导函数f′(x),满足f′(x)<f(x),且f(x+2)=f(x﹣2),f(4)=1,则不等式f(x)<ex的解集为(
A.(0,+∞)
B.(1,+∞)
C.(4,+∞)
D.(﹣2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】把函数的图象上所有点的横坐标缩小到原来的(纵坐标不变),再将图象上所有点向右平移个单位,所得函数图象所对应的解析式为__

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax2+bx和g(x)=lnx. (Ⅰ) 若a=b=1,求证:f(x)的图象在g(x)图象的上方;
(Ⅱ) 若f(x)和g(x)的图象有公共点P,且在点P处的切线相同,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如下图所示,圆柱的高为2,底面半径为,AEDF是圆柱的两条母线,过作圆柱的截面交下底面于,四边形ABCD是正方形.

(1)求证

(2)求四棱锥E-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图PA⊥平面ABCDABCD是矩形,PA=AB=1AD=,点F是PB的中点,点E在边BC上移动.

1)当点E为BC的中点时,试判断EF与平面PAC的位置关系,并说明理由;

2)证明:无论点E在边BC的何处,都有PE⊥AF.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中, 底面,底面为矩形,且 的中点.

(1)过点作一条射线,使得,求证:平面平面

(2)求二面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,已知三棱锥P-ABC,∠ACB=90°,CB=4,AB=20,D为AB的中点,且△PDB是正三角形,PA⊥PC.

(1)求证:平面PAC⊥平面ABC.

(2)求二面角D-AP-C的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知坐标平面上的凸四边形 ABCD 满足 =(1, ), =(﹣ ,1),则凸四边形ABCD的面积为 的取值范围是

查看答案和解析>>

同步练习册答案