精英家教网 > 高中数学 > 题目详情

已知abc是互不相等的非零实数.

求证:三个方程ax2+2bxc=0,bx2+2cxa=0,cx2+2axb=0至少有一个方程有两个相异实根.

答案:
解析:

证明:反证法:

假设三个方程中都没有两个相异实根,

Δ1=4b2-4ac≤0,Δ2=4c2-4ab≤0,Δ3=4a2-4bc≤0.

相加有a2-2abb2b2-2bcc2c2-2aca2≤0,

(ab)2+(bc)2+(ca)2≤0……………………①

由题意abc互不相等,∴①式不能成立.

∴假设不成立,即三个方程中至少有一个方程有两个相异实根


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

26、已知a,b,c是互不相等的实数,求证:由y=ax2+2bx+c,y=bx2+2cx+a,y=cx2+2ax+b确定的三条抛物线至少有一条与x轴有两个不同的交点.

查看答案和解析>>

科目:高中数学 来源: 题型:

11、已知a、b、c是互不相等的非零实数.若用反证法证明三个方程ax2+2bx+c=0,bx2+2cx+a=0,cx2+2ax+b=0至少有一个方程有两个相异实根,应假设成(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

17、已知a、b、c是互不相等的非零实数.
求证:三个方程ax2+2bx+c=0,bx2+2cx+a=0,cx2+2ax+b=0至少有一个方程有两个相异实根.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a、b、c是互不相等的三个实数,且
1
a
1
b
1
c
成等差数列,则
c-b
b-a
(  )

查看答案和解析>>

科目:高中数学 来源:2010-2011年浙江省高二下学期期中考试文科数学 题型:解答题

(12分)

已知a、b、c是互不相等的非零实数.

求证:三个方程ax2+2bx+c=0,bx2+2cx+a=0,cx2+2ax+b=0至少有一个方程有两个相异实根.

 

查看答案和解析>>

同步练习册答案