精英家教网 > 高中数学 > 题目详情

如图,在四棱锥P﹣ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=4,AB=2,M是PD的中点.

(1)求证:平面ABM⊥平面PCD;

(2)求直线CD与平面ACM所成角的正弦值;

(3)以AC的中点O为球心、AC为直径的球交PC于点N求点N到平面ACM的距离.

 

【答案】

(1)先证明AM⊥平面PCD;(2);(3)

【解析】

试题分析:(1)由底面ABCD是矩形,PA⊥平面ABCD,PA=AD=4,AB=2,解得BP=2=BD

又M在PD上,且BM⊥PD,∴M为BD中点,∴AM⊥PD;

又BA⊥PA,且BA⊥AD,PA∩AD=A,∴BA⊥平面PAD,

∴BA⊥AM,

∵CD⊥AM,PD∩CD=D,∴AM⊥面PCD,

∵AM?平面ABM,

∴平面ABM⊥平面PCD。

(2)建右手系,用向量计算,

平面ACM的一个法向量是n=(2,-1,1)

所求角的正弦值为

(3)由条件可得AN⊥NC,

所求距离为

考点:本题主要考查立体几何中的垂直关系,二面角的计算。

点评:中档题,立体几何中的垂直、平行关系,是高考常常考查的内容。关于距离的计算通常有两种思路,一是几何法,注意“一作、二证、三计算”;二一种思路,是利用空间向量,简化证明过程。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在四棱锥P-ABCD中,底面ABCD是矩形.已知AB=3,AD=2,PA=2,PD=2
2
,∠PAB=60°.
(1)证明AD⊥PB;
(2)求二面角P-BD-A的正切值大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,PA⊥平面ABCD,四边形ABCD为正方形,AB=4,PA=3,点A在PD上的射影为点G,点E在AB上,平面PEC⊥平面PDC.
(1)求证:AG∥平面PEC;
(2)求AE的长;
(3)求二面角E-PC-A的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,PA⊥底面ABCD,∠BCD=120°,BC⊥AB,CD⊥AD,BC=CD=PA=a,
(Ⅰ)求证:平面PBD⊥平面PAC.
(Ⅱ)求四棱锥P-ABCD的体积V.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面是边长为a的菱形,∠ABC=60°PD⊥面ABCD,PC=a,E为PB中点
(1)求证;平面ACE⊥面ABCD;
(2)求三棱锥P-EDC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•武汉模拟)如图,在四棱锥P-ABCD中,底面ABCD是直角梯形,BC∥AD,且∠BAD=90°,又PA⊥底面ABCD,BC=AB=PA=1,AD=2.
(1)求二面角P-CD-A的平面角正切值,
(2)求A到面PCD的距离.

查看答案和解析>>

同步练习册答案