【题目】唐朝的狩猎景象浮雕银杯如图1所示.其浮雕临摹了国画、漆绘和墓室壁画,体现了古人的智慧与工艺.它的盛酒部分可以近似地看作是半球与圆柱的组合体(假设内壁表面光滑,忽略杯壁厚度),如图2所示.已知球的半径为R,酒杯内壁表面积为
,设酒杯上部分(圆柱)的体积为
,下部分(半球)的体积为
,则
( )
![]()
A.2B.
C.1D.![]()
科目:高中数学 来源: 题型:
【题目】某公司采购了一批零件,为了检测这批零件是否合格,从中随机抽测120个零件的长度(单位:分米),按数据分成
,
,
,
,
,
这6组,得到如图所示的频率分布直方图,其中长度大于或等于1.59分米的零件有20个,其长度分别为1.59,1.59,1.61,1.61,1.62,1.63,1.63,1.64,1.65,1.65,1.65,1.65,1.66,1.67,1.68,1.69,1.69,1.71,1.72,1.74,以这120个零件在各组的长度的频率估计整批零件在各组长度的概率.
![]()
(1)求这批零件的长度大于1.60分米的频率,并求频率分布直方图中
,
,
的值;
(2)若从这批零件中随机选取3个,记
为抽取的零件长度在
的个数,求
的分布列和数学期望;
(3)若变量
满足
且
,则称变量
满足近似于正态分布
的概率分布.如果这批零件的长度
(单位:分米)满足近似于正态分布
的概率分布,则认为这批零件是合格的将顺利被签收;否则,公司将拒绝签收.试问,该批零件能否被签收?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知曲线
的参数方程为
(
为参数).以直角坐标系的原点
为极点,
轴的正半轴为极轴建立坐标系,曲线
的极坐标方程为
.
(1)求
的普通方程和
的直角坐标方程;
(2)若过点
的直线
与
交于
,
两点,与
交于
,
两点,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某人坚持跑步锻炼,根据他最近20周的跑步数据,制成如下条形图:
![]()
根据条形图判断,下列结论正确的是( )
A.周跑步里程逐渐增加
B.这20周跑步里程平均数大于30km
C.这20周跑步里程中位数大于30km
D.前10周的周跑步里程的极差大于后10周的周跑步里程的极差
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥
中,四边形
为梯形,
,且
,
是边长为2的正三角形,顶点
在
上的射影为点
,且
,
,
.
![]()
(1)证明:平面
平面
;
(2)求二面角
的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线
的极坐标方程是
,以极点为原点,极轴为
轴的正半轴,建立平面直角坐标系,直线
过点
,倾斜角为
.
(1)求曲线
的直角坐标方程与直线l的参数方程;
(2)设直线
与曲线
交于
,
两点,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,设点
的坐标分别为
,直线
相交于点
,且它们的斜率之积为
.
![]()
(1)求点
的轨迹方程;
(2)设点
的轨迹为
,点
是轨迹为
上不同于
的两点,且满足
,求证:
的面积为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】法国数学家庞加是个喜欢吃面包的人,他每天都会购买一个面包,面包师声称自己出售的每个面包的平均质量是1000
,上下浮动不超过50
.这句话用数学语言来表达就是:每个面包的质量服从期望为1000
,标准差为50
的正态分布.
(1)假设面包师的说法是真实的,从面包师出售的面包中任取两个,记取出的两个面包中质量大于1000
的个数为
,求
的分布列和数学期望;
(2)作为一个善于思考的数学家,庞加莱每天都会将买来的面包称重并记录,25天后,得到数据如下表,经计算25个面包总质量为24468
.庞加莱购买的25个面包质量的统计数据(单位:
)
981 | 972 | 966 | 992 | 1010 | 1008 | 954 | 952 | 969 | 978 |
989 | 1001 | 1006 | 957 | 952 | 969 | 981 | 984 | 952 | 959 |
987 | 1006 | 1000 | 977 | 966 |
尽管上述数据都落在
上,但庞加菜还是认为面包师撒谎,根据所附信息,从概率角度说明理由
附:
①若
,从X的取值中随机抽取25个数据,记这25个数据的平均值为Y,则由统计学知识可知:随机变量![]()
②若
,则
,
,
;
③通常把发生概率在0.05以下的事件称为小概率事件.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com