【题目】汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况,下列叙述中错误的是( )
![]()
A.消耗1升汽油乙车最多可行驶5千米.
B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多.
C.甲车以80千米/小时的速度行驶1小时,消耗10升汽油.
D.某城市机动车最高限速80千米/小时,相同条件下,在该市用丙车比用乙车更省油.
【答案】ABC
【解析】
过横轴上某一点做纵轴的平行线,这条线和三条折线的交点的意思是相同速度下的三个车的不同的燃油效率,过纵轴上某一点做横轴的平行线,这条线和三条折线的交点的意思是相同燃油效率下的三个车的不同的速度,利用这一点就可以很快解决问题.涉及到将图形语言转化为数学语言的能力和简单的逻辑推理能力.
解:对于A,由图象可知当速度大于40km/h时,乙车的燃油效率大于5km/L,
∴当速度大于40km/h时,消耗1升汽油,乙车的行驶距离大于5km,故A错误;
对于B,由图象可知当速度相同时,甲车的燃油效率最高,即当速度相同时,消耗1升汽油,甲车的行驶路程最远,
∴以相同速度行驶相同路程,三辆车中,甲车消耗汽油最少,故B错误;
对于C,由图象可知当速度为80km/h时,甲车的燃油效率为10km/L,即甲车行驶10km时,耗油1升,故行驶1小时,路程为80km,燃油为8升,故C错误;
对于D,由图象可知当速度小于80km/h时,丙车的燃油效率大于乙车的燃油效率,
∴用丙车比用乙车更省油,故D正确.
故选:ABC.
科目:高中数学 来源: 题型:
【题目】已知抛物线
与直线
只有一个公共点,点
是抛物线
上的动点.
(1)求抛物线
的方程;
(2)①若
,求证:直线
过定点;
②若
是抛物线
上与原点不重合的定点,且
,求证:直线
的斜率为定值,并求出该定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在四棱锥
中,
,
,
平面ABCD,E为PD的中点,
.
![]()
(1)求四棱锥
的体积V;
(2)若F为PC的中点,求证:平面
平面AEF;
(3)求二面角
的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知0<m<2,动点M到两定点F1(﹣m,0),F2(m,0)的距离之和为4,设点M的轨迹为曲线C,若曲线C过点
.
(1)求m的值以及曲线C的方程;
(2)过定点
且斜率不为零的直线l与曲线C交于A,B两点.证明:以AB为直径的圆过曲线C的右顶点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在等腰梯形
中,
∥
,
,直角梯形
所在的平面垂直于平面
,且
,
.
![]()
(1)证明:平面
平面
;
(2)点
在线段
上,试确定点
的位置,使平面
与平面
所成的二面角的余弦值为
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】四棱锥
的底面ABCD是边长为a的菱形,
面ABCD,
,E,F分别是CD,PC的中点.
![]()
(1)求证:平面
平面PAB;
(2)M是PB上的动点,EM与平面PAB所成的最大角为
,求二面角
的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
是定义在R上的奇函数,当
时,
,给出下列命题:
①函数
有2个零点;
②
的解集为
;
③
,
,都有
;
④当
时,
,则
.
其中真命题的个数是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥
中,
,
,
,
,直线
与平面
成
角,
为
的中点,
,
.
![]()
(Ⅰ)若
,求证:平面
平面
;
(Ⅱ)若
,求直线
与平面
所成角的正弦值的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com