【题目】南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列.对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”.现有高阶等差数列,其前7项分别为1,5,11,21,37,6l,95,则该数列的第8项为( )
A.99B.131C.139D.141
科目:高中数学 来源: 题型:
【题目】《高中数学课程标准》(2017版)规定了数学直观想象学科的六大核心素养,为了比较甲、乙两名高二学生的数学核心素养水平,现以六大素养为指标对二人进行了测验,根据测验结果绘制了雷达图(如图,每项指标值满分为5分,分值高者为优),则下面叙述正确的是(注:雷达图
,又可称为戴布拉图、蜘蛛网图
,可用于对研究对象的多维分析)( )
![]()
A.甲的直观想象素养高于乙
B.甲的数学建模素养优于数据分析素养
C.乙的数学建模素养与数学运算素养一样
D.乙的六大素养整体水平低于甲
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设无穷数列
的每一项均为正数,对于给定的正整数
,
(
),若
是等比数列,则称
为
数列.
(1)求证:若
是无穷等比数列,则
是
数列;
(2)请你写出一个不是等比数列的
数列的通项公式;
(3)设
为
数列,且满足
,请用数学归纳法证明:
是等比数列.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】成都七中为了解班级卫生教育系列活动的成效,对全校40个班级进行了一次突击班级卫生量化打分检查(满分100分,最低分20分).根据检查结果:得分在
评定为“优”,奖励3面小红旗;得分在
评定为“良”,奖励2面小红旗;得分在
评定为“中”,奖励1面小红旗;得分在
评定为“差”,不奖励小红旗.已知统计结果的部分频率分布直方图如图:
![]()
(1)依据统计结果的部分频率分布直方图,求班级卫生量化打分检查得分的中位数;
(2)学校用分层抽样的方法,从评定等级为“良”、“中”的班级中抽取6个班级,再从这6个班级中随机抽取2个班级进行抽样复核,求所抽取的2个班级获得的奖励小红旗面数和不少于3的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有关部门在某公交站点随机抽取了100名乘客,统计其乘车等待时间(指乘客从进站口到乘上车的时间,乘车等待时间不超过40分钟),将数据按
,
,
,![]()
,
,
分组,绘制成如图所示的频率分布直方图.
![]()
假设乘客乘车等待时间相互独立.
(1)求抽取的100名乘客乘车等待时间的中位数(保留一位小数);
(2)现从该车站等车的乘客中随机抽取4人,记等车时间在
的人数为
,用频率估计概率,求随机变量
的分布列与数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
为等差数列,各项为正的等比数列
的前n项和为
, ,且
,
,.在①
;②
;③
这三个条件中任选其中一个,补充在上面的横线上,并完成下面问题的解答(如果选择多个条件解答,则按选择第一个解答计分).
(1)求数列
和
的通项公式;
(2)求数列
的前
项和![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
与
轴正半轴交于点
,与
轴交于
、
两点.
(1)求过
、
、
三点的圆
的方程;
(2)若
为坐标原点,直线
与椭圆
和(1)中的圆
分别相切于点
和点
(
、
不重合),求直线
与直线
的斜率之积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com