【题目】已知圆
,
为
上任意一点,
,
的垂直平分线交
于点
,记点
的轨迹为曲线
.
(1)求曲线
的方程;
(2)已知点
,过
的直线
交
于
两点,证明:直线
的斜率与直线
的斜率之和为定值.
【答案】(1)
(2)证明见解析
【解析】
(1)由PF的中垂线可得GP=GF,而GP+GE=PE=4,进而可得G的轨迹为椭圆;且可得F,E为椭圆的焦点,PE的长为长轴长,进而求出椭圆的方程;(2)设直线MN的方程,与椭圆联立求出两根之和及两根之积,进而求出直线SM,SN的斜率之和,将之和及之积代入,由由于Q在直线上,可得参数的关系,进而可得斜率之和为定值.
(1)因为点
在
的垂直平分线上,所以
.
而
,
所以动点
满足
,
椭圆定义可知,
点在以
、
为焦点的椭圆上,且
,
所以
,
所以曲线
的方程为
.
(2)由题意知直线
斜率存在.
设其方程为
,
,
,
联立方程组
代入消元并整理得:
,
则
,
.
,将直线方程代入,整理得:
![]()
,
韦达定理代入化简得:
.
因为直线
过点
,所以
,
代入
,得
.
科目:高中数学 来源: 题型:
【题目】已知某保险公司的某险种的基本保费为
(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:
上年度出险次数 | 0 | 1 | 2 | 3 | ≥4 |
保费(元) |
|
|
|
|
|
随机调查了该险种的
名续保人在一年内的出险情况,得到下表:
出险次数 | 0 | 1 | 2 | 3 | ≥4 |
频数 | 280 | 80 | 24 | 12 | 4 |
该保险公司这种保险的赔付规定如下:
出险序次 | 第1次 | 第2次 | 第3次 | 第4次 | 第5次及以上 |
赔付金额(元) |
|
|
|
|
|
将所抽样本的频率视为概率.
(1)求本年度续保人保费的平均值的估计值;
(2)按保险合同规定,若续保人在本年度内出险
次,则可获得赔付
元;依此类推,求本年度续保人所获赔付金额的平均值的估计值;
(3)续保人原定约了保险公司的销售人员在上午
之间上门签合同,因为续保人临时有事,外出的时间在上午
之间,请问续保人在离开前见到销售人员的概率是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某班A、B两名学生六次数学测验成绩(百分制)如图所示:
![]()
①A同学成绩的中位数大于B同学成绩的中位数;
②A同学的平均分比B同学高;
③A同学的平均分比B同学低;
④A同学成绩方差小于B同学的方差,
以上说法中正确的是( )
A.③④B.①②④C.②④D.①③④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下图是某省从1月21日至2月24日的新冠肺炎每日新增确诊病例变化曲线图.
![]()
若该省从1月21日至2月24日的新冠肺炎每日新增确诊人数按日期顺序排列构成数列
,
的前n项和为
,则下列说法中正确的是( )
A.数列
是递增数列B.数列
是递增数列
C.数列
的最大项是
D.数列
的最大项是![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
极坐标系的极点为直角坐标系
的原点,极轴为
轴的正半轴,两种坐标系中的长度单位相同,已知曲线
的极坐标方程为
.
(1)求
的直角坐标方程;
(2)直线
(
为参数)与曲线
交于
两点,与
轴交于
,求
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“总把新桃换旧符”(王安石)、“灯前小草写桃符”(陆游),春节是中华民族的传统节日,在宋代人们用写“桃符”的方式来祈福避祸,而现代人们通过贴“福”字、贴春联、挂灯笼等方式来表达对新年的美好祝愿,某商家在春节前开展商品促销活动,顾客凡购物金额满50元,则可以从“福”字、春联和灯笼这三类礼品中任意免费领取一件,若有4名顾客都领取一件礼品,则他们中有且仅有2人领取的礼品种类相同的概率是( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,倾斜角为
的直线
的参数方程为
(其中
为参数).在以
为极点、
轴的非负半轴为极轴的极坐标系(两种坐标系的单位长度相同)中,曲线
:
的焦点
的极坐标为
.
(1)求常数
的值;
(2)设
与
交于
、
两点,且
,求
的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,曲线
的参数方程为
(
为参数),直线
的参数方程为
,(t为参数),在以原点为极点,x轴正半轴为极轴的极坐标中,曲线
的极坐标方程为
.
(1)将
与
的方程化为极坐标方程;
(2)若曲线
与
的公共点都在
上,
,求r.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com