【题目】数学的发展推动着科技的进步,正是基于线性代数、群论等数学知识的极化码原理的应用,华为的5G技术领先世界.目前某区域市场中5G智能终端产品的制造由H公司及G公司提供技术支持据市场调研预测,5C商用初期,该区域市场中采用H公司与G公司技术的智能终端产品分别占比
及
假设两家公司的技术更新周期一致,且随着技术优势的体现每次技术更新后,上一周期采用G公司技术的产品中有20%转而采用H公司技术,采用H公司技术的仅有5%转而采用G公司技术设第n次技术更新后,该区域市场中采用H公司与G公司技术的智能终端产品占比分别为
及
,不考虑其它因素的影响.
(1)用
表示
,并求实数
使
是等比数列;
(2)经过若干次技术更新后该区域市场采用H公司技术的智能终端产品占比能否达到75%以上?若能,至少需要经过几次技术更新;若不能,说明理由?(参考数据:
)
科目:高中数学 来源: 题型:
【题目】在城市旧城改造中,某小区为了升级居住环境,拟在小区的闲置地中规划一个面积为
的矩形区域(如图所示),按规划要求:在矩形内的四周安排
宽的绿化,绿化造价为200元/
,中间区域地面硬化以方便后期放置各类健身器材,硬化造价为100元/
.设矩形的长为
.
![]()
(1)设总造价
(元)表示为长度
的函数;
(2)当
取何值时,总造价最低,并求出最低总造价.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂为了对研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:
单价 | 9 | 9.2 | 9.4 | 9.6 | 9.8 | 10 |
销量 | 100 | 94 | 93 | 90 | 85 | 78 |
(1)若销量
与单价
服从线性相关关系,求该回归方程;
(2)在(1)的前提下,若该产品的成本是5元/件,问:产品该如何确定单价,可使工厂获得最大利润。
附:对于一组数据
,
,……
,
其回归直线
的斜率的最小二乘估计值为
;
本题参考数值:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,A、B、C为⊙O上三点,B为
的中点,P为AC延长线上一点,PQ与⊙O相切于点Q,BQ与AC相交于点D.
(Ⅰ)证明:△DPQ为等腰三角形;
(Ⅱ)若PC=1,AD=PD,求BDQD的值.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
为圆
上一动点,圆心
关于
轴的对称点为
,点
分别是线段
上的点,且
.
(1)求点
的轨迹方程;
(2)直线
与点
的轨迹
只有一个公共点
,且点
在第二象限,过坐标原点
且与
垂直的直线
与圆
相交于
两点,求
面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,曲线
的参数方程为
(
为参数,
),以原点
为极点,
轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(1)写出曲线
的普通方程和曲线
的直角坐标方程;
(2)已知点
是曲线
上一点,若点
到曲线
的最小距离为
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有甲、乙两个桔柚(球形水果)种植基地,已知所有采摘的桔柚的直径都在
范围内(单位:毫米,以下同),按规定直径在
内为优质品,现从甲、乙两基地所采摘的桔柚中各随机抽取500个,测量这些桔柚的直径,所得数据整理如下:
直径分组 |
|
|
|
|
|
|
|
甲基地频数 | 10 | 30 | 120 | 175 | 125 | 35 | 5 |
乙基地频数 | 5 | 35 | 115 | 165 | 110 | 60 | 10 |
(1)根据以上统计数据完成下面
列联表,并回答是否有
以上的把握认为“桔柚直径与所在基地有关?”
甲基地 | 乙基地 | 合计 | |
优质品 | _________ | _________ | _________ |
非优质品 | _________ | _________ | _________ |
合计 | _________ | _________ | _________ |
(2)求优质品率较高的基地的500个桔柚直径的样本平均数
(同一组数据用该区间的中点值作代表);
(3)记甲基地直径在
范围内的五个桔柚分别为
、
、
、
、
,现从中任取二个,求含桔柚
的概率.
附:
,
.
| 0.10 | 0.05 | 0.010 | 0.005 | 0.001 |
| 2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com