【题目】如图,在以A,B,C,D,E,F为顶点的五面体中,面ABEF为正方形,AF=2FD,∠AFD=90°,且二面角D﹣AF﹣E与二面角C﹣BE﹣F都是60°. ![]()
(Ⅰ)证明平面ABEF⊥平面EFDC;
(Ⅱ)求二面角E﹣BC﹣A的余弦值.
【答案】解:(Ⅰ)证明:∵ABEF为正方形,∴AF⊥EF.
∵∠AFD=90°,∴AF⊥DF,
∵DF∩EF=F,
∴AF⊥平面EFDC,
∵AF平面ABEF,
∴平面ABEF⊥平面EFDC;
(Ⅱ)解:由AF⊥DF,AF⊥EF,
可得∠DFE为二面角D﹣AF﹣E的平面角;
由ABEF为正方形,AF⊥平面EFDC,
∵BE⊥EF,
∴BE⊥平面EFDC
即有CE⊥BE,
可得∠CEF为二面角C﹣BE﹣F的平面角.
可得∠DFE=∠CEF=60°.
∵AB∥EF,AB平面EFDC,EF平面EFDC,
∴AB∥平面EFDC,
∵平面EFDC∩平面ABCD=CD,AB平面ABCD,
∴AB∥CD,
∴CD∥EF,
∴四边形EFDC为等腰梯形.
以E为原点,建立如图所示的坐标系,设FD=a,
则E(0,0,0),B(0,2a,0),C(
,0,
a),A(2a,2a,0),
∴
=(0,2a,0),
=(
,﹣2a,
a),
=(﹣2a,0,0)
设平面BEC的法向量为
=(x1,y1,z1),则
,
则
,取
=(
,0,﹣1).
设平面ABC的法向量为
=(x2,y2,z2),则
,
则
,取
=(0,
,4).
设二面角E﹣BC﹣A的大小为θ,则cosθ= ![]()
=
=﹣
,
则二面角E﹣BC﹣A的余弦值为﹣
.
![]()
【解析】(Ⅰ)证明AF⊥平面EFDC,利用平面与平面垂直的判定定理证明平面ABEF⊥平面EFDC;(Ⅱ)证明四边形EFDC为等腰梯形,以E为原点,建立如图所示的坐标系,求出平面BEC、平面ABC的法向量,代入向量夹角公式可得二面角E﹣BC﹣A的余弦值.
科目:高中数学 来源: 题型:
【题目】已知O为坐标原点,椭圆
的左、右焦点分别为
,离心率
,椭圆
上的点到焦点
的最短距离为
.
(1)求椭圆C的标准方程;
(2)设T为直线
上任意一点,过
的直线交椭圆C于点P,Q,且为抛物线
,求
的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=(1﹣m)lnx+
﹣x,m∈R且m≠0.
(Ⅰ)当m=2时,令g(x)=f(x)+log2(3k﹣1),k为常数,求函数y=g(x)的零点的个数;
(Ⅱ)若不等式f(x)>1﹣
在x∈[1,+∞)上恒成立,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
,圆
:
的圆心
在椭圆上,点
到椭圆
的右焦点的距离为
.
(1)求椭圆
的标准方程;
(2)过点
作互相垂直的两条直线
,且
交椭圆
于
两点,直线
交圆
于
,
两点,且
为
的中点,求
面积的取值范围.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《数学九章》中对已知三角形三边长求三角形的面积的求法填补了我国传统数学的一个空白,与著名的海伦公式完全等价,由此可以看出我国古代已具有很高的数学水平,其求法是:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上,以小斜幂乘大斜幂减上,余四约之,为实.一为从隔,开平方得积.”若把以上这段文字写成公式,即S=
.现有周长为4+
的△ABC满足sinA:sinB:sinC=(
﹣1):
: (
+1),试用以上给出的公式求得△ABC的面积为( )
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某高中组织数学知识竞赛,采取答题闯关的形式,分两种题型,每种题型设两关.“数学文化”题答对一道得5分,“数学应用”题答对一道得10分,答对一道题即可进入下一关,否则终止比赛.有甲、乙、丙三人前来参赛,设三人答对每道题的概率分别是
、
、
,三人答题互不影响.甲、乙选择“数学文化”题,丙选择“数学应用”题.
(Ⅰ)求乙、丙两人所得分数相等的概率;
(Ⅱ)设甲、丙两人所得分数之和为随机变量X,求X的分布列与期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为研究男女同学空间想象能力的差异,孙老师从高一年级随机选取了20名男生、20名女生,进行空间图形识别测试,得到成绩茎叶图如下,假定成绩大于等于80分的同学为“空间想象能力突出”,低于80分的同学为“空间想象能力正常”. ![]()
(1)完成下面2×2列联表,
空间想象能力突出 | 空间想象能力正常 | 合计 | |
男生 |
|
|
|
女生 |
|
|
|
合计 |
|
|
|
(2)判断是否有90%的把握认为“空间想象能力突出”与性别有关;
(3)从“空间想象能力突出”的同学中随机选取男生2名、女生2名,记其中成绩超过90分的人数为ξ,求随机变量ξ的分布列和数学期望. 下面公式及临界值表仅供参考:
P(X2≥k) | 0.100 | 0.050 | 0.010 |
k | 2.706 | 3.841 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】平面直角坐标系xOy中,已知椭圆
的左焦点为F,离心率为
,过点F且垂直于长轴的弦长为
.
(I)求椭圆C的标准方程;
(Ⅱ)设点A,B分别是椭圆的左、右顶点,若过点P(﹣2,0)的直线与椭圆相交于不同两点M,N.
(i)求证:∠AFM=∠BFN;
(ii)求△MNF面积的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com