【题目】已知O为坐标原点,椭圆
的左、右焦点分别为
,离心率
,椭圆
上的点到焦点
的最短距离为
.
(1)求椭圆C的标准方程;
(2)设T为直线
上任意一点,过
的直线交椭圆C于点P,Q,且为抛物线
,求
的最小值.
科目:高中数学 来源: 题型:
【题目】甲、乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完
局仍未出现连胜,则判定获胜局数多者赢得比赛.假设每局甲获胜的概率为
,乙获胜的概率为
,各局比赛结果相互独立.
(Ⅰ)求甲在4局以内(含 4 局)赢得比赛的概率;
(Ⅱ)记 X 为比赛决出胜负时的总局数,求X的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=(x+m)lnx,曲线y=f(x)在x=e(e为自然对数的底数)处得到切线与圆x2+y2=5在点(2,﹣1)处的切线平行.
(1)证明:
;
(2)若不等式(ax+1)(x﹣1)<(a+1)lnx在x∈(0,1)上恒成立,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)=a(x﹣lnx)+
,a∈R.
(I)讨论f(x)的单调性;
(II)当a=1时,证明f(x)>f′(x)+
对于任意的x∈[1,2]成立.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x),g(x)分别是定义在R上的偶函数和奇函数,且f(x)+g(x)=2x , 若存在x0∈[1,2]使得等式af(x0)+g(2x0)=0成立,则实数a的取值范围是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知角x始边与x轴的非负半轴重合,与圆x2+y2=4相交于点A,终边与圆x2+y2=4相交于点B,点B在x轴上的射影为C,△ABC的面积为S(x),函数y=S(x)的图象大致是( )
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】等差数列{an}的前n项和为Sn , 且a3=9,S6=60.
(I)求数列{an}的通项公式;
(II)若数列{bn}满足bn+1﹣bn=an(n∈N+)且b1=3,求数列
的前n项和Tn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:
的上、下焦点分别为F1 , F2 , 上焦点F1到直线 4x+3y+12=0的距离为3,椭圆C的离心率e=
. ![]()
(I)若P是椭圆C上任意一点,求|
||
|的取值范围;
(II)设过椭圆C的上顶点A的直线l与椭圆交于点B(B不在y轴上),垂直于l的直线与l交于点M,与x轴交于点H,若
=0,且|
|=|
|,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在以A,B,C,D,E,F为顶点的五面体中,面ABEF为正方形,AF=2FD,∠AFD=90°,且二面角D﹣AF﹣E与二面角C﹣BE﹣F都是60°. ![]()
(Ⅰ)证明平面ABEF⊥平面EFDC;
(Ⅱ)求二面角E﹣BC﹣A的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com