【题目】新冠肺炎疫情造成医用防护服紧缺,当地政府决定为防护服生产企业A公司扩大生产提供
(万元)的专项补贴,并以每套80元的价格收购其生产的全部防护服.A公司在收到政府x(万元)补贴后,防护服产量将增加到
(万件),其中k为工厂工人的复工率
,A公司生产t万件防护服还需投入成本
(万元).
(1)将A公司生产防护服的利润y(万元)表示为补贴x(万元)的函数;
(2)对任意的
(万元),当复工率k达到多少时,A公司才能不产生亏损?(精确到0.01)
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,曲线
的参数方程是
(
是参数).以坐标原点
为极点,
轴的正半轴为极轴建立极坐标系,直线
的极坐标方程为
,其倾斜角为
.
(Ⅰ)证明直线
恒过定点
,并写出直线
的参数方程;
(Ⅱ)在(Ⅰ)的条件下,若直线
与曲线
交于
,
两点,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数![]()
(1)若函数
在区间
上恒成立,求实数a的取值范围;
(2)若函数
在区间
上有两个极值点,求实数a的取值范围;
(3)若函数
的导函数
的图象与函数
图象有两个不同的交点,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
,
(1)若展开式中第5项,第6项与第7项的二项式系数成等差数列,求展开式中二项式系数最大项
的系数;
(2)若展开式前三项的二项式系数和等于79,求展开式中系数最大的项.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】第41届世界博览会于2010年5月1日至10月31日,在中国上海举行,气势磅礴的中国馆——“东方之冠”令人印象深刻,该馆以“东方之冠,鼎盛中华,天下粮仓,富庶百姓”为设计理念,代表中国文化的精神与气质.其形如冠盖,层叠出挑,制似斗拱.它有四根高33.3米的方柱,托起斗状的主体建筑,总高度为60.3米,上方的“斗冠”类似一个倒置的正四棱台,上底面边长是139.4米,下底面边长是69.9米,则“斗冠”的侧面与上底面的夹角约为( ).
![]()
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的两个焦点
,
与短轴的一个端点构成一个等边三角形,且直线
与圆
相切.
(1)求椭圆
的方程;
(2)已知过椭圆
的左顶点
的两条直线
,
分别交椭圆
于
,
两点,且
,求证:直线
过定点,并求出定点坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com