精英家教网 > 高中数学 > 题目详情

【题目】新冠肺炎疫情造成医用防护服紧缺,当地政府决定为防护服生产企业A公司扩大生产提供(万元)的专项补贴,并以每套80元的价格收购其生产的全部防护服.A公司在收到政府x(万元)补贴后,防护服产量将增加到(万件),其中k为工厂工人的复工率A公司生产t万件防护服还需投入成本(万元).

1)将A公司生产防护服的利润y(万元)表示为补贴x(万元)的函数;

2)对任意的(万元),当复工率k达到多少时,A公司才能不产生亏损?(精确到0.01

【答案】1;(2.

【解析】

1)根据题意,由利润等于收入减去成本,即可列出函数关系;

2)根据(1)的结果,由题意,只需上恒成立,即上恒成立,根据函数单调性,求出的最大值,即可得出结果.

1)因为公司生产万件防护服还需投入成本,政府以每套80元的价格收购其生产的全部防护服,且提供(万元)的专项补贴,

所以,公司生产防护服的利润

2)为使公司不产生亏损,只需利润上恒成立;即上恒成立;

因为

,因为,所以

任取

因为,所以,即

所以,即

所以函数上单调递增;

因此,即的最大值为

所以只需,即.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数处的切线方程为.

(1)求实数的值;

(2)若有两个极值点,求的取值范围并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程是是参数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为,其倾斜角为

)证明直线恒过定点,并写出直线的参数方程;

)在()的条件下,若直线与曲线交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若函数在区间上恒成立,求实数a的取值范围;

2)若函数在区间上有两个极值点,求实数a的取值范围;

3)若函数的导函数的图象与函数图象有两个不同的交点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

1若展开式中第5项,第6项与第7项的二项式系数成等差数列,求展开式中二项式系数最大项

的系数;

2若展开式前三项的二项式系数和等于79,求展开式中系数最大的项.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】41届世界博览会于201051日至1031日,在中国上海举行,气势磅礴的中国馆——“东方之冠令人印象深刻,该馆以东方之冠,鼎盛中华,天下粮仓,富庶百姓为设计理念,代表中国文化的精神与气质.其形如冠盖,层叠出挑,制似斗拱.它有四根高33.3米的方柱,托起斗状的主体建筑,总高度为60.3米,上方的斗冠类似一个倒置的正四棱台,上底面边长是139.4米,下底面边长是69.9米,则斗冠的侧面与上底面的夹角约为( ).

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行如图所示程序框图,若输出的值为,在条件框内应填写( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在上的函数,其中e为自然对数的底数.

1)求证:有且只有一个极小值点;

2)若不等式上恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的两个焦点与短轴的一个端点构成一个等边三角形,且直线与圆相切.

1)求椭圆的方程;

2)已知过椭圆的左顶点的两条直线分别交椭圆两点,且,求证:直线过定点,并求出定点坐标.

查看答案和解析>>

同步练习册答案