精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中,已知四边形是菱形,,二面角的大小为的中点.

1)求证:平面

2)求直线与平面所成角的正弦值.

【答案】1)见解析;(2.

【解析】

1)连接于点,连接,根据三角形的中位线定理证得,然后利用线面平行的判定定理证明即可;

2)先根据(1)得到直线与平面所成的角,即直线与平面所成的角,然后过点,利用面面垂直的性质定理得到平面,进而得为直线与平面所成的角,最后求的正弦值即可.

1)如图所示:

连接于点,则的中点,连接

的中点,所以

因为平面平面

所以平面

2)过点,垂足为,连接

由(1)知

所以直线与平面所成的角,即直线与平面所成的角.

易知,又的中点,

所以

同理,又

所以平面

因为平面

所以平面平面

因为平面平面平面

所以平面

所以为直线与平面所成的角.

因为,所以,又

所以平面ACP

所以为二面角的平面角,

所以

设菱形的边长,又

所以

由余弦定理得:

所以

中,

所以

所以直线与平面所成角的正弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知下列命题:

①函数上单调递减,在上单调递增;

②若函数上有两个零点,则的取值范围是

③当时,函数的最大值为0

④函数上单调递减;

上述命题正确的是_________(填序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2020年寒假期间新冠肺炎肆虐,全国人民众志成城抗击疫情.某市要求全体市民在家隔离,同时决定全市所有学校推迟开学.某区教育局为了让学生“停课不停学”,要求学校各科老师每天在网上授课,每天共280分钟,请学生自主学习.区教育局为了了解高三学生网上学习情况,上课几天后在全区高三学生中采取随机抽样的方法抽取了100名学生进行问卷调查,为了方便表述把学习时间在分钟的学生称为类,把学习时间在分钟的学生称为类,把学习时间在分钟的学生称为类,随机调查的100名学生学习时间的人数频率分布直方图如图所示:以频率估计概率回答下列问题:

1)求100名学生中三类学生分别有多少人?

2)在三类学生中,按分层抽样的方法从上述100个学生中抽取10人,并在这10人中任意邀请3人电话访谈,求邀请的3人中是类的学生人数的分布列和数学期望;

3)某校高三(1)班有50名学生,某天语文和数学老师计划分别在19:0019:4020:0020:40在线上与学生交流,由于受校园网络平台的限制,每次只能30个人同时在线学习交流.假设这两个时间段高三(1)班都有30名学生相互独立地随机登录参加学习交流.表示参加语文或数学学习交流的人数,当为多少时,其概率最大.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知矩形ABCDAF⊥平面ABC,且.E为线段DC上一点,沿直线AE将△ADE翻折成M的中点,则三棱锥体积的最小值是________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若存在极值,求实数a的取值范围;

2)设,设是定义在上的函数.

)证明:上为单调递增函数(的导函数);

)讨论的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知各项均为正数的两个数列满足.且

1)求证数列为等差数列;

2)求数列的通项公式;

3)设数列的前n项和分别为,求使得等式成立的有序数对

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 为等差数列 的前 项和,其中 ,且

(1)求常数 的值,并写出 的通项公式;

(2)记 ,数列 的前 项和为 ,若对任意的 ,都有 ,求常数 的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2020年新冠肺炎疫情暴发以来,中国政府迅速采取最全面、最严格、最彻底的防控举措,坚决遏制疫情蔓延势头,努力把疫情影响降到最低,为全世界抗击新冠肺炎疫情做岀了贡献.为普及防治新冠肺炎的相关知识,某高中学校开展了线上新冠肺炎防控知识竞答活动,现从大批参与者中随机抽取200名幸运者,他们的得分(满分100分)数据统计结果如图:

1)若此次知识竞答得分整体服从正态分布,用样本来估计总体,设分别为这200名幸运者得分的平均值和标准差(同一组数据用该区间中点值代替),求的值(的值四舍五入取整数),并计算

2)在(1)的条件下,为感谢大家积极参与这次活动,对参与此次知识竞答的幸运者制定如下奖励方案:得分低于的获得1次抽奖机会,得分不低于的获得2次抽奖机会.假定每次抽奖中,抽到18元红包的概率为,抽到36元红包的概率为.已知高三某同学是这次活动中的幸运者,记为该同学在抽奖中获得红包的总金额,求的分布列和数学期望,并估算举办此次活动所需要抽奖红包的总金额.

参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正三棱柱的每条棱的长度都相等,分别是棱的中点,是棱上一点,且平面.

1)证明:平面.

2)求直线与平面所成角的正弦值.

查看答案和解析>>

同步练习册答案