【题目】如图,在四棱锥
中,已知四边形
是菱形,
,
,
,二面角
的大小为
,
是
的中点.
![]()
(1)求证:
平面
;
(2)求直线
与平面
所成角的正弦值.
【答案】(1)见解析;(2)
.
【解析】
(1)连接
交
于点
,连接
,根据三角形的中位线定理证得
,然后利用线面平行的判定定理证明即可;
(2)先根据(1)得到直线
与平面
所成的角,即直线
与平面
所成的角,然后过点
作
,利用面面垂直的性质定理得到
平面
,进而得
为直线
与平面
所成的角,最后求
的正弦值即可.
(1)如图所示:
![]()
连接
交
于点
,则
是
的中点,连接
.
又
是
的中点,所以
,
因为
平面
,
平面
,
所以
平面
.
(2)过点
作
,垂足为
,连接
.
由(1)知
,
所以直线
与平面
所成的角,即直线
与平面
所成的角.
易知
,又
是
的中点,
所以
.
同理
,又
,
所以
平面
,
因为
平面
,
所以平面
平面
.
因为平面
平面
,
平面
,
,
所以
平面
,
所以
为直线
与平面
所成的角.
因为
,所以
,又
,
,
所以
平面ACP,
所以
为二面角
的平面角,
所以
,
设菱形
的边长
,又
,
所以
,
由余弦定理得:
,
所以
,
在
中,
,
,
,
所以
,
所以直线
与平面
所成角的正弦值为
.
科目:高中数学 来源: 题型:
【题目】已知下列命题:
①函数
在
上单调递减,在
上单调递增;
②若函数
在
上有两个零点,则
的取值范围是
;
③当
时,函数
的最大值为0;
④函数
在
上单调递减;
上述命题正确的是_________(填序号).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2020年寒假期间新冠肺炎肆虐,全国人民众志成城抗击疫情.某市要求全体市民在家隔离,同时决定全市所有学校推迟开学.某区教育局为了让学生“停课不停学”,要求学校各科老师每天在网上授课,每天共280分钟,请学生自主学习.区教育局为了了解高三学生网上学习情况,上课几天后在全区高三学生中采取随机抽样的方法抽取了100名学生进行问卷调查,为了方便表述把学习时间在
分钟的学生称为
类,把学习时间在
分钟的学生称为
类,把学习时间在
分钟的学生称为
类,随机调查的100名学生学习时间的人数频率分布直方图如图所示:以频率估计概率回答下列问题:
![]()
(1)求100名学生中
,
,
三类学生分别有多少人?
(2)在
,
,
三类学生中,按分层抽样的方法从上述100个学生中抽取10人,并在这10人中任意邀请3人电话访谈,求邀请的3人中是
类的学生人数的分布列和数学期望;
(3)某校高三(1)班有50名学生,某天语文和数学老师计划分别在19:00—19:40和20:00—20:40在线上与学生交流,由于受校园网络平台的限制,每次只能30个人同时在线学习交流.假设这两个时间段高三(1)班都有30名学生相互独立地随机登录参加学习交流.设
表示参加语文或数学学习交流的人数,当
为多少时,其概率最大.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知矩形ABCD,
,
,AF⊥平面ABC,且
.E为线段DC上一点,沿直线AE将△ADE翻折成
,M为
的中点,则三棱锥
体积的最小值是________.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
.
(1)若
存在极值,求实数a的取值范围;
(2)设
,设
是定义在
上的函数.
(ⅰ)证明:
在
上为单调递增函数(
是
的导函数);
(ⅱ)讨论
的零点个数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知各项均为正数的两个数列
,
满足
,
.且
.
(1)求证数列
为等差数列;
(2)求数列
的通项公式;
(3)设数列
,
的前n项和分别为
,
,求使得等式
成立的有序数对
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设
为等差数列
的前
项和,其中
,且
.
(1)求常数
的值,并写出
的通项公式;
(2)记
,数列
的前
项和为
,若对任意的
,都有
,求常数
的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2020年新冠肺炎疫情暴发以来,中国政府迅速采取最全面、最严格、最彻底的防控举措,坚决遏制疫情蔓延势头,努力把疫情影响降到最低,为全世界抗击新冠肺炎疫情做岀了贡献.为普及防治新冠肺炎的相关知识,某高中学校开展了线上新冠肺炎防控知识竞答活动,现从大批参与者中随机抽取200名幸运者,他们的得分(满分100分)数据统计结果如图:
![]()
(1)若此次知识竞答得分
整体服从正态分布,用样本来估计总体,设
,
分别为这200名幸运者得分的平均值和标准差(同一组数据用该区间中点值代替),求
,
的值(
,
的值四舍五入取整数),并计算
;
(2)在(1)的条件下,为感谢大家积极参与这次活动,对参与此次知识竞答的幸运者制定如下奖励方案:得分低于
的获得1次抽奖机会,得分不低于
的获得2次抽奖机会.假定每次抽奖中,抽到18元红包的概率为
,抽到36元红包的概率为
.已知高三某同学是这次活动中的幸运者,记
为该同学在抽奖中获得红包的总金额,求
的分布列和数学期望,并估算举办此次活动所需要抽奖红包的总金额.
参考数据:
;
;
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com