【题目】已知△SAB是边长为2的等边三角形,∠ACB=45°,当三棱锥S﹣ABC体积最大时,其外接球的表面积为( )
A.
B.
C.
D.![]()
【答案】B
【解析】
作出图形,由平面CAB与平面SAB垂直且CA=CB时,三棱S﹣ABC的体积最大,并过两个三角形的外心作所在三角形面的垂线,两垂直交于点O,利用几何关系计算出球O的半径,然后利用球体表面积公式可得出答案.
由题可知,平面CAB⊥平面SAB,且CA=CB时,三棱锥S﹣ABC体积达到最大,如图所示,
则点D,点E分别为△ASB,△ACB的外心,并过两个三角形的外心作所在三角形面的垂线,两垂直交于点O.
∴点O是此三棱锥外接球的球心,AO即为球的半径.
在△ACB中,AB=2,∠ACB=45°∠AEB=90°,由正弦定理可知,
2AE,∴AE=EB=EC
,
延长CE交AB于点F,则F为AB的中点,所以点D在直线SF上,
∴四边形EFDO是矩形,且OE⊥平面ACB,则有OE⊥AE,
又∵OE=DF
SF
AB
,
∴OA
.
∴S球表面积=4πR2=4π×(
)2
.
故选:B.
![]()
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,曲线
的参数方程为
(
为参数),直线
过原点且倾斜角为
,以原点为极点,
轴的正半轴为极轴建立极坐标系.
(1)求曲线
和直线
的极坐标方程;
(2)若相交于不同的两点
,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以直角坐标系
的原点为极点,x轴的非负半轴为极轴建立极坐标系,并且在两种坐标系中取相同的长度单位.若将曲线
(
为参数)上每一点的横坐标变为原来的
(纵坐标不变),然后将所得图象向右平移2个单位,再向上平移3个单位得到曲线C.直线l的极坐标方程为
.
(1)求曲线C的普通方程;
(2)设直线l与曲线C交于A,B两点,与x轴交于点P,线段AB的中点为M,求
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知点
,
,动点
满足直线MP与直线NP的斜率之积为
.记动点P的轨迹为曲线C.
(1)求曲线C的方程,并说明C是什么曲线;
(2)过点
作直线
与曲线C交于不同的两点A,B,试问在x轴上是否存在定点Q,使得直线QA与直线QB恰好关于x轴对称?若存在,求出点Q的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,已知椭圆![]()
的右焦点为
,上顶点为
,
,点
在椭圆
上.
(1)求椭圆
的标准方程;
(2)动直线l与椭圆
相交于
、
两点,与
轴相交于点
,与
轴的正半轴相交于点
,
为线段
的中点,若
为定值
,请判断直线l是否过定点,求实数
的值,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com