精英家教网 > 高中数学 > 题目详情

已知ABC三个内角A、B、C成等差数列,且AB=1,BC=4,则边BC上的中线AD的长为           


解析:

提示:A、B、C成等差数列2B=A+C,而A+B+C=,解得B=

则AD2=AB2+BD2-2AB·BDcosB=1+4-2=3,故AD=

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知△ABC三个内角A、B、C的对边分别为a、b、c,向量.
m
=(cos
A
2
,sin
A
2
)  ,
n
=(cos
A
2
,-sin
A
2
)
,且
m
n
的夹角为
π
3

(1)求A;
(2)已知a=
7
2
,求bc的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC三个内角A,B,C的对边分别为a,b,c,
3
b=2a•sinB
,且
AB
AC
>0

(1)求∠A的度数;
(2)若cos(A-C)+cosB=
3
2
,a=6,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
m
=(cosx+
3
sinx,1),
n
=(2cosx,-y)
,满足
m
n
=0

(1)将y表示为x的函数f(x),并求f(x)的单调递增区间;
(2)已知△ABC三个内角A、B、C的对边分别为a、b、c,若f(
A
2
)=3
,且a=2,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC三个内角A、B、C的对边分别为 a、b、c,向量 
 m
=(cos
C
2
,sin
C
2
),
n
=(cos
C
2
,-sin
C
2
),且
m
n
的夹角为
π
3

(Ⅰ)求角C的值;
(Ⅱ)已知c=3,△ABC的面积S=
4
3
3
,求a+b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC三个内角A、B、C的对边为a、b、c,
m
=(a,cosB),
n
=(cosA,-b),a≠b
,已知
m
n

(1)判断三角形的形状,并说明理由.
(2)若y=
sinA+sinB
sinAsinB
,试确定实数y的取值范围.

查看答案和解析>>

同步练习册答案