精英家教网 > 高中数学 > 题目详情

【题目】已知抛物线C1x2=y,圆C2x2+y﹣42=1的圆心为点M

1)求点M到抛物线C1的准线的距离;

2)已知点P是抛物线C1上一点(异于原点),过点P作圆C2的两条切线,交抛物线C1AB两点,若过MP两点的直线l垂直于AB,求直线l的方程.

【答案】12

【解析】1)由题意画出简图为:

由于抛物线C1x2=y准线方程为:y=﹣,圆C2x2+y﹣42=1的圆心M04),

利用点到直线的距离公式可以得到距离d==

2)设点Px0x02),Ax1x12),Bx2x22);

由题意得:x0≠0x2≠±1x1≠x2

设过点P的圆c2的切线方程为:y﹣x02=kx﹣x0)即y=kx﹣kx0+x02

,即(x02﹣1k2+2x04﹣x02k+x02﹣42﹣1=0

PAPB的斜率为k1k2k1≠k2),则k1k2应该为上述方程的两个根,

代入得:x2﹣kx+kx0﹣x02="0" x1x2应为此方程的两个根,

x1=k1﹣x0x2=k2﹣x0

∴kAB=x1+x2=k1+k2﹣2x0=

由于MP⊥AB∴kABKMP=﹣1

P

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】从某山区养殖场散养的3500头猪中随机抽取5头,测量猪的体长x(cm)和体重y(kg),得如下测量数据:

猪编号

1

2

3

4

5

x

169

181

166

185

180

y

95

100

97

103

101


(1)当且仅当x,y满足:x≥180且y≥100时,该猪为优等品,用上述样本数据估计山区养殖场散养的3500头猪中优等品的数量;
(2)从抽取的上述5头猪中,随机抽取2头中优等品数x的分布列及其数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某保险的基本保费为a(单位:元),继续购买该保险的投保人成为续保人,续保人本年度的保费与其上年度出险次数的关联如下:

上年度出险次数

0

1

2

3

4

≥5

保费

0.85a

a

1.25a

1.5a

1.75a

2a

设该险种一续保人一年内出险次数与相应概率如下:

一年内出险次数

0

1

2

3

4

≥5

概率

0.30

0.15

0.20

0.20

0.10

0.05


(1)求一续保人本年度的保费高于基本保费的概率;
(2)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率;
(3)求续保人本年度的平均保费与基本保费的比值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某广场中间有一块边长为2百米的菱形状绿化区ABCD,其中BMN是半径为1百米的扇形,∠ABC= .管理部门欲在该地从M到D修建小路:在 上选一点P(异于M,N两点),过点P修建与BC平行的小路PQ.

(1)若∠PBC= ,求PQ的长度;
(2)当点P选择在何处时,才能使得修建的小路 与PQ及QD的总长最小?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知整数n≥4,集合M={1,2,3,…,n}的所有含有4个元素的子集记为A1 , A2 , A3 , …,
设A1 , A2 , A3 , …, 中所有元素之和为Sn
(1)求S4 , S5 , S6并求出Sn
(2)证明:S4+S5+…+Sn=10Cn+26

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数的零点个数为_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 是非零不共线的向量,设 = + ,定义点集M={K| = },当K1 , K2∈M时,若对于任意的r≥2,不等式| |≤c| |恒成立,则实数c的最小值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C1 + =1,圆C2:x2+y2=t经过椭圆C1的焦点.
(1)设P为椭圆上任意一点,过点P作圆C2的切线,切点为Q,求△POQ面积的取值范围,其中O为坐标原点;
(2)过点M(﹣1,0)的直线l与曲线C1 , C2自上而下依次交于点A,B,C,D,若|AB|=|CD|,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面的中点.

(1)求证:

(2)求证:

(3)求二面角E-AB-C的正切值

查看答案和解析>>

同步练习册答案