精英家教网 > 高中数学 > 题目详情

(本题满分12分)

如图,正三棱柱ABC-A1B1C1的所有棱长都为2,D为CC1中点。(Ⅰ)求证:AB1⊥面A1BD;

(Ⅱ)求二面角A-A1D-B的大小;

(Ⅲ)求点C到平面A1BD的距离;

(Ⅰ)略(Ⅱ)(Ⅲ)


解析:

:解法一:(Ⅰ)取中点,连结

为正三角形,

正三棱柱中,

平面平面平面

连结,在正方形中,分别为

的中点,

在正方形中,平面

(Ⅱ)设交于点,在平面中,作,连结,由(Ⅰ)得平面为二面角的平面角.在中,由等面积法可求得,又

所以二面角的大小为

(Ⅲ)中,

在正三棱柱中,到平面的距离为.设点到平面的距离为

到平面的距离为

解法二:(Ⅰ)取中点,连结

为正三角形,

在正三棱柱中,平面平面

平面

中点,以为原点,的方向为轴的正方向建立空间直角坐标系,则

平面

(Ⅱ)设平面的法向量为

为平面的一个法向量.

由(Ⅰ)知平面为平面的法向量.

二面角的大小为

(Ⅲ)由(Ⅱ),为平面法向量,

      

       到平面的距离

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

( 本题满分12分 )
已知函数f(x)=cos4x-2sinxcosx-sin4x
(I)求f(x)的最小正周期;
(II)若x∈[0,
π2
]
,求f(x)的最大值,最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本题满分12分)已知数列是首项为,公比的等比数列,,

,数列.

(1)求数列的通项公式;(2)求数列的前n项和Sn.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年上海市金山区高三上学期期末考试数学试卷(解析版) 题型:解答题

(本题满分12分,第1小题6分,第2小题6分)

已知集合A={x| | xa | < 2,xÎR },B={x|<1,xÎR }.

(1) 求AB

(2) 若,求实数a的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年安徽省高三10月月考理科数学试卷(解析版) 题型:解答题

(本题满分12分)

设函数为常数),且方程有两个实根为.

(1)求的解析式;

(2)证明:曲线的图像是一个中心对称图形,并求其对称中心.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年重庆市高三第二次月考文科数学 题型:解答题

(本题满分12分,(Ⅰ)小问4分,(Ⅱ)小问6分,(Ⅲ)小问2分.)

如图所示,直二面角中,四边形是边长为的正方形,上的点,且⊥平面

(Ⅰ)求证:⊥平面

(Ⅱ)求二面角的大小;

(Ⅲ)求点到平面的距离.

 

查看答案和解析>>

同步练习册答案