精英家教网 > 高中数学 > 题目详情
7.若0<x<$\frac{π}{4},sin(\frac{π}{4}-x)=\frac{5}{13}$,则$\frac{cos2x}{{cos(\frac{π}{4}+x)}}$=(  )
A.$\frac{24}{13}$B.$-\frac{24}{13}$C.$\frac{10}{13}$D.$-\frac{10}{13}$

分析 利用同角三角函数关系式求出cos($\frac{π}{4}-x$),和与差的公式构造出cos2x,即可求出结果.

解答 解:∵0<x<$\frac{π}{4},sin(\frac{π}{4}-x)=\frac{5}{13}$,
∴$-\frac{π}{4}<\frac{π}{4}-x<\frac{π}{4}$,
∴cos($\frac{π}{4}-x$)=$\frac{12}{13}$.
cos2x═sin[($\frac{π}{4}-x$)$+(\frac{π}{4}-x)$]=2sin($\frac{π}{4}-x$)cos($\frac{π}{4}-x$)=2×$\frac{5}{13}×\frac{12}{13}$=$\frac{120}{169}$.
cos($\frac{π}{4}+x$)=sin($\frac{π}{2}-(\frac{π}{4}-x)$)=$\frac{5}{13}$,
那么:$\frac{cos2x}{{cos(\frac{π}{4}+x)}}$=$\frac{120}{169}×\frac{13}{5}=\frac{24}{13}$.
故选:A.

点评 本题主要考查了同角三角函数关系式和和与差公式的应用,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.近期中央电视台播出的《中国诗词大会》火遍全国.某选拔赛后,随机抽取100名选手的成绩,按成绩由低到高依次分为第1,2,3,4,5组,制成频率分布直方图如图所示:
(Ⅰ)在第3、4、5组中用分层抽样抽取5名选手,求第3、4、5组每组各抽取多少名选手;
(Ⅱ)在(Ⅰ)的前提下,在5名选手中随机抽取2名选手,求第4组至少有一名选手被抽取的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知(1-2x)n(n∈N+)的展开式中第三项和第八项的二项式系数相等,则展开式所有项的系数和为(  )
A.1B.-1C.0D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设铁路AB长为100,BC⊥AB,且BC=30,为将货物从A运往C,现在AB上距点B为x的点M处修一公路至C,已知单位距离的铁路运费为2,公路运费为4.
(1)将总运费y表示为x的函数;
(2)如何选点M才使总运费最小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.对于函数y=f(x),部分x与y的对应关系如表:
x123456789
y745813526
数列{xn}满足x1=2,且对任意n?N,点(xn,xn+1)都在函数y=f(x)的图象上,则x1+x2+x3+…+x2017的值为(  )
A.9400B.9408C.9410D.9414

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=$\frac{1}{2}{cos^2}x+\frac{{\sqrt{3}}}{2}$sinxcosx+1.
(1)求函数f(x)的最小正周期和其图象对称中心的坐标;
(2)求函数f(x)在$[\frac{π}{12},\frac{π}{4}]$上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=$\sqrt{3}$,(2$\overrightarrow{a}$-3$\overrightarrow{b}$)•(2$\overrightarrow{a}$+$\overrightarrow{b}$)=19
(1)求$\overrightarrow{a}$与$\overrightarrow{b}$的夹角θ
(2)若$\overrightarrow{a}$⊥($\overrightarrow{a}$+λ$\overrightarrow{b}$),求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若函数f(x)=x2-2lnx在x=x0处的切线与直线x+3y+2=0垂直,则x0=(  )
A.$-\frac{1}{2}$或2B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=x•lnx,g(x)=2mx-1(m∈R).
(Ⅰ)求函数f(x)在x=1处的切线方程;
(Ⅱ)若关于x的方程f(x)=g(x)在$[{\frac{1}{e},e}]$上有两个不同的解,求实数m的取值范围.

查看答案和解析>>

同步练习册答案