精英家教网 > 高中数学 > 题目详情
19.已知|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=$\sqrt{3}$,(2$\overrightarrow{a}$-3$\overrightarrow{b}$)•(2$\overrightarrow{a}$+$\overrightarrow{b}$)=19
(1)求$\overrightarrow{a}$与$\overrightarrow{b}$的夹角θ
(2)若$\overrightarrow{a}$⊥($\overrightarrow{a}$+λ$\overrightarrow{b}$),求λ的值.

分析 (1)运用向量数量积的性质:向量的平方即为模的平方,可得$\overrightarrow a•\overrightarrow b=-3$,再由向量夹角公式,计算即可得到所求值;
(2)由向量垂直的条件:数量积为0,解方程即可得到所求值.

解答 解:(1)由$({2\overrightarrow a-3\overrightarrow b})•({2\overrightarrow a+\overrightarrow b})=19$
可得$4{|{\overrightarrow a}|^2}-4\overrightarrow a•\overrightarrow b-3{|{\overrightarrow b}|^2}=19$.
又∵$|{\overrightarrow a}|=2,|{\overrightarrow b}|=\sqrt{3}$,
∴$16-4\overrightarrow a•\overrightarrow b-9=19$,
即$\overrightarrow a•\overrightarrow b=-3$,
∴$cosθ=\frac{\overrightarrow a•\overrightarrow b}{{|{\overrightarrow a}|•|{\overrightarrow b}|}}=\frac{-3}{{2×\sqrt{3}}}=-\frac{{\sqrt{3}}}{2}$.
∵0≤θ≤π,
∴$θ=\frac{5π}{6}$.
(2)由$\overrightarrow a⊥(\overrightarrow a+λ\overrightarrow b)$可得,$\overrightarrow a•(\overrightarrow a+λ\overrightarrow b)=0$,
即${\overrightarrow a^2}+λ\overrightarrow a•\overrightarrow b=0$,
即4-3λ=0,
解得$λ=\frac{4}{3}$.

点评 本题考查向量的数量积的定义和夹角公式,以及向量数量积的性质,向量的平方即为模的平方和向量垂直的条件:数量积为0,考查化简整理的运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知定认在R上的可导函数f(x)的导函数f′(x),若对于任意实数x,有f′(x)<f(x),且y=f(x)-1为奇函数,则不等式f(x)<ex的解集为(  )
A.(0,+∞)B.(-∞,0)C.(-∞,e4D.(e4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若函数f(x)的导函数f′(x)=x2-3x-10,则函数f(1-x)的单调递增区间是(  )
A.($\frac{3}{2}$,+∞)B.(-$\frac{1}{2}$,+∞)C.(-4,3)D.(-∞,-4)和(3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若0<x<$\frac{π}{4},sin(\frac{π}{4}-x)=\frac{5}{13}$,则$\frac{cos2x}{{cos(\frac{π}{4}+x)}}$=(  )
A.$\frac{24}{13}$B.$-\frac{24}{13}$C.$\frac{10}{13}$D.$-\frac{10}{13}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知向量$\overrightarrow{m}$=(2sinθ,sinθ-cosθ),$\overrightarrow n=(cosθ,-2-m)$,函数$f(θ)=\overrightarrow m•\overrightarrow n$的最小值为g(m).
(1)当m=2时,求g(m)的值;
(2)求g(m);
(3)已知函数h(x)为定义在R上的增函数,且对任意的x1,x2都满足h(x1+x2)=h(x1)+h(x2),问:是否存在这样的实数m,使不等式$h(\frac{4}{sinθ-cosθ})+h(2m+3)>h(f(θ))$对所有$θ∈(\frac{π}{4},π)$恒成立.若存在,求出m的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.某个命题与正整数有关,若当n=k(k∈N*)时该命题成立,那么可推得当n=k+1时该命题也成立,现已知当n=9时该命题不成立,那么可推得(  )
A.当n=10时,该命题不成立B.当n=10时,该命题成立
C.当n=8时,该命题成立D.当n=8时,该命题不成立

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设f(x)=-$\frac{1}{3}$x3+$\frac{1}{2}$x2+2ax.
(1)讨论f(x)的单调区间;
(2)若f(x)在[1,+∞)上存在单调递增区间,求a的取值范围;
(3)当0<a<2时,f(x)在[1,4]上的最小值为-$\frac{16}{3}$,求f(x)在该区间上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.数列{an}满足:an+1=2an+1,a1=1.
(Ⅰ)证明:数列{an+1}是等比数列,并求数列{an}的通项公式;
(Ⅱ)设bn=$\frac{1}{{{{log}_2}({{a_n}+1})}}$,n∈N*,求证:b1•b2+b2•b3+…+bn•bn+1<1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.数列-1,4,-9,16,-25…的一个通项公式为(  )
A.an=n2B.${a_n}={(-1)^n}{n^2}$C.${a_n}={(-1)^{n+1}}{n^2}$D.${a_n}={(-1)^n}{(n+1)^2}$

查看答案和解析>>

同步练习册答案