精英家教网 > 高中数学 > 题目详情

【题目】已知函数

Ⅰ)求函数的单调递增区间;

Ⅱ)把的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移个单位,得到函数的图象,求的值.

【答案】1;(2

【解析】试题分析:(1)根据诱导公式、二倍角的正弦余弦公式以及辅助角公式将函数化为的形式,将内层函数看作整体,放到正弦函数的增区间上,解不等式得函数的单调增区间;(2)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移个单位可得到的解析式从而得求的值.

试题解析:(1

所以的单调递增区间是

2)由(1)知的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到的图象,再把得到的图象向左平移个单位,得到 的图象

,所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若存在实常数,使得函数对其定义域上的任意实数分别满足: ,则称直线隔离直线.已知为自然对数的底数)

1)求的极值;

2)函数是否存在隔离直线?若存在,求出此隔离直线方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知p: ,q:x2﹣2x+1﹣m2≤0(m>0).若¬p是¬q的充分不必要条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】兰州一中在世界读书日期间开展了书香校园系列读书教育活动。为了解本校学生课外阅读情况,学校随机抽取了100名学生对其课外阅读时间进行调查。下面是根据调查结果绘制的学生日均课外阅读时间(单位:分钟)的频率分布直方图,且将日均课外阅读时间不低于60分钟的学生称为读书迷,低于60分钟的学生称为非读书迷

非读书迷

读书迷

合计

15

45

(1)根据已知条件完成下面2×2列联表,并据此判断是否有99%的把握认为“读书迷”与性别有关?

2利用分层抽样从这100名学生的读书迷”中抽取8名进行集训,从中选派2名参加兰州市读书知识比赛,求至少有一名男生参加比赛的概率。

附:

0.100

0.050

0.025

0.010

0.001

k0

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面平面是等边三角形,已知

(1)设上的一点,证明:平面平面

(2)求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知(x+1)n=a0+a1(x﹣1)+a2(x﹣1)2+a3(x﹣1)3+…+an(x﹣1)n , (其中n∈N*
(1)求a0及Sn=a1+2a2+3a3+…+nan
(2)试比较Sn与n3的大小,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设l,m是两条不同直线,α是一个平面,则下列四个命题正确的是(
A.若l⊥m,mα,则l⊥α
B.若l∥α,m∥α,则l∥m
C.若l∥α,mα,则l∥m
D.若l⊥α,l∥m,则m⊥α

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆 过椭圆 ()的短轴端点, 分别是圆与椭圆上任意两点且线段长度的最大值为3.

(Ⅰ)求椭圆的方程;

(Ⅱ)过点作圆的一条切线交椭圆 两点,求的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)=﹣ x3+ x2+2ax.
(1)若f(x)在( ,+∞)上是单调减函数,求实数a的取值范围.
(2)当0<a<2时,f(x)在[1,4]上的最小值为﹣ ,求f(x)在该区间的最大值.

查看答案和解析>>

同步练习册答案