【题目】
已知中心在坐标原点O的椭圆C经过点A(2,3),且点F(2.0)为其右焦点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)是否存在平行于OA的直线L,使得直线L与椭圆C有公共点,且直线OA与L的距离等于4?若存在,求出直线L的方程;若不存在,说明理由.
科目:高中数学 来源: 题型:
【题目】设椭圆
(
)的离心率为
,圆
与
轴正半轴交于点
,圆
在点
处的切线被椭圆
截得的弦长为
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)设圆
上任意一点
处的切线交椭圆
于点
,试判断
是否为定值?若为定值,求出该定值;若不是定值,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知焦点在x轴上的椭圆C1的长轴长为8,短半轴为2
,抛物线C2的顶点在原点且焦点为椭圆C1的右焦点.
(1)求抛物线C2的标准方程;
(2)过(1,0)的两条相互垂直的直线与抛物线C2有四个交点,求这四个点围成四边形的面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】汽车尾气中含有一氧化碳
,碳氢化合物
等污染物,是环境污染的主要因素之一,汽车在使用若干年之后排放的尾气之中的污染物会出现递增的现象,所以国家根据机动车使用和安全技术、排放检验状况,对达到报废标准的机动车实施强制报废,某环境组织为了解公众对机动车强制报废标准的了解情况,随机调查了
人,所得数据制成如下列联表:
![]()
(1)若从这
人中任选
人,选到了解强制报废标准的人的概率为
,问是否在犯错的概率不超过5﹪的前提下认为“机动车强制报废标准是否了解与性别有关”?
(2)该环保组织从相关部门获得某型号汽车的使用年限与排放的尾气中
浓度的数据,并制成如图所示的折线图,若该型号汽车的使用年限不超过
年,可近似认为排放的尾气中
浓度
﹪与使用年限
线性相关,确定
与
的回归方程,并预测该型号的汽车使用
年排放尾气中的
浓度是使用
年的多少倍.
![]()
附:
,![]()
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面上给定相异两点A,B,设P点在同一平面上且满足
,当
且
时,P点的轨迹是一个圆,这个轨迹最先由古希腊数学家阿波罗尼斯发现,故我们称这个圆为阿波罗尼斯圆,现有双曲线
(
,
),A,B为双曲线的左、右顶点,C,D为双曲线的虚轴端点,动点P满足
,
面积的最大值为
,
面积的最小值为4,则双曲线的离心率为______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某小区有一块三角形空地,如图△ABC,其中AC=180米,BC=90米,∠C=90°,开发商计划在这片空地上进行绿化和修建运动场所,在△ABC内的P点处有一服务站(其大小可忽略不计),开发商打算在AC边上选一点D,然后过点P和点D画一分界线与边AB相交于点E,在△ADE区域内绿化,在四边形BCDE区域内修建运动场所. 现已知点P处的服务站与AC距离为10米,与BC距离为100米. 设
米,试问
取何值时,运动场所面积最大?
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com