【题目】已知椭圆的中心在原点,焦点在x轴上
分别为左、右焦点,椭圆的一个顶点与两焦点构成等边三角形,且
.
(1)求椭圆方程;
(2)对于x轴上的某一点T,过T作不与坐标轴平行的直线L交椭圆于
两点,若存在x轴上的点S,使得对符合条件的L恒有
成立,我们称S为T的一个配对点,当T为左焦点时,求T的配对点的坐标;
(3)在(2)条件下讨论当T在何处时,存在有配对点?
【答案】(1)
(2)(-4,0)(3)![]()
【解析】
(1)设椭圆的顶点为P,由
可得
,由
结合椭圆的定义可得2a,结合
可求椭圆的方程
(2)可设过T的直线方程为
,
,联立椭圆方程整理可得
,设
,
,
,由
得
即
,结合方程的根与系数的关系代入可求a
(3)设
,直线
的方程
,
,使得对符合条件的L恒有
成立,则T必须在
之间即![]()
同(2)的整理方法,联立直线与椭圆方程由
可得,
,同(2)的方法一样代入可求
解:(1)设椭圆的顶点为P,由
可得![]()
可得![]()
,![]()
椭圆的方程为:![]()
(2)
,
则过可设过T的直线方程为
,
,
联立椭圆方程整理可得![]()
设
,
,
,则
,![]()
![]()
![]()
![]()
整理可得![]()
即![]()
![]()
(3)设
,直线
的方程
,![]()
使得对符合条件的L恒有
成立,则T必须在
之间即![]()
同(2)的整理方法,联立直线与椭圆方程可得,
,![]()
由
可得,![]()
同(2)的方法一样代入可求
.
科目:高中数学 来源: 题型:
【题目】已知数列
满足:
,
,
.
(1)求
的值;
(2)设
,求证:数列
是等比数列,并求出其通项公式;
(3)对任意的
,
,在数列
中是否存在连续的
项构成等差数列?若存在,写出这
项,并证明这
项构成等差数列:若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列
的前
项和为
,且
,
(
).
(1)计算
,
,
,
,并求数列
的通项公式;
(2)若数列
满足
,求证:数列
是等比数列;
(3)由数列
的项组成一个新数列
:
,
,
,
,
,设
为数列
的前
项和,试求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知六棱锥P-ABCDEF的底面是正六边形,PA⊥平面ABC,PA=2AB,则下列结论中:①PB⊥AE;②平面ABC⊥平面PBC;③直线BC∥平面PAE;④∠PDA=45°.
其中正确的有____________(把所有正确的序号都填上).
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列
的前
项和为
,若
,则称
是“
数列”.
(1)若
是“
数列”,且
,
,
,
,求
的取值范围;
(2)若
是等差数列,首项为
,公差为
,且
,判断
是否为“
数列”;
(3)设数列
是等比数列,公比为
,若数列
与
都是“
数列”,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】符合以下性质的函数称为“
函数”:①定义域为
,②
是奇函数,③
(常数
),④
在
上单调递增,⑤对任意一个小于
的正数
,至少存在一个自变量
,使
.下列四个函数中
,
,
,
中“
函数”的个数为( )
A.
个B.
个C.
个D.
个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
(
,
为实数),
.
(1)若函数
的最小值是
,求
的解析式;
(2)在(1)的条件下,
在区间
上恒成立,试求
的取值范围;
(3)若
,
为偶函数,实数
,
满足
,
,定义函数
,试判断
值的正负,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】当前,旅游已经成为新时期人民群众美好生活和精神文化需求的重要内容.旅游是综合性产业,是拉动经济发展的重要动力,也为整个经济结构调整注入活力.文化旅游产业研究院发布了《2019年中国文旅产业发展趋势报告》,报告指出:旅游业稳步增长,每年占国家GDP总量的比例逐年增加,如图及下表为2014年到2018年的相关统计数据.
旅游收入占国家GDP总量比例趋势 | |||||
年份: | 1 | 2 | 3 | 4 | 5 |
占比: | 10.4 | 10.8 | 11.0 | 11.0 | 11.2 |
![]()
(1)根据以上数据,求出占比
关于年份
的线性回归方程
;
(2)根据(1)所求线性回归方程,预测2019年的旅游收入所占的比例.
附:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,椭圆![]()
的离心率为
,右准线的方程为![]()
![]()
分别为椭圆C的左、右焦点,A,B分别为椭圆C的左、右顶点.
![]()
(1)求椭圆C的标准方程;
(2)过![]()
作斜率为![]()
的直线l交椭圆C于M,N两点(点M在点N的左侧),且
,设直线AM,BN的斜率分别为![]()
,求
的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com