【题目】已知 m、n 是两条不同的直线,α、β、γ是三个不同的平面,下列命题中正确的是( )
A.若α⊥β , β⊥γ ,则α∥γ
B.若
,
, m∥n ,则α∥β
C.若 m、n 是异面直线,
, m∥β ,
, n∥α ,则α∥β
D.平面α内有不共线的三点到平面 β的距离相等,则α∥β
科目:高中数学 来源: 题型:
【题目】在三棱锥
中,底面
是边长为6的正三角形,
底面
,且
与底面
所成的角为
.
![]()
(1)求三棱锥
的体积;
(2)若
是
的中点,求异面直线
与
所成角的大小(结果用反三角函数值表示).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业打算处理一批产品,这些产品每箱100件,以箱为单位销售.已知这批产品中每箱出现的废品率只有
或者
两种可能,两种可能对应的概率均为0.5.假设该产品正品每件市场价格为100元,废品不值钱.现处理价格为每箱8400元,遇到废品不予更换.以一箱产品中正品的价格期望值作为决策依据.
(1)在不开箱检验的情况下,判断是否可以购买;
(2)现允许开箱,有放回地随机从一箱中抽取2件产品进行检验.
①若此箱出现的废品率为
,记抽到的废品数为
,求
的分布列和数学期望;
②若已发现在抽取检验的2件产品中,其中恰有一件是废品,判断是否可以购买.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,正方形
的棱长为1,线段
上有两个动点
.
,且
,则下列结论中错误的是( )
![]()
A.
;
B.三棱锥
体积是定值;
C.二面角
的平面角大小是定值;
D.
与平面
所成角等于
与平面
所成角;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
满足
,且
,
分别是定义在
上的偶函数和奇函数.
(1)求函数
的反函数;
(2)已知
,若函数
在
上满足
,求实数a的取值范围;
(3)若对于任意
不等式
恒成立,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校兴趣小组在如图所示的矩形区域
内举行机器人拦截挑战赛,在
处按
方向释放机器人甲,同时在
处按某方向释放机器人乙,设机器人乙在
处成功拦截机器人甲.若点
在矩形区域
内(包含边界),则挑战成功,否则挑战失败.已知
米,
为
中点,机器人乙的速度是机器人甲的速度的2倍,比赛中两机器人均按匀速直线运动方式行进,记
与
的夹角为
.
![]()
(1)若
,
足够长,则如何设置机器人乙的释放角度才能挑战成功?(结果精确到
);
(2)如何设计矩形区域
的宽
的长度,才能确保无论
的值为多少,总可以通过设置机器人乙的释放角度使机器人乙在矩形区域
内成功拦截机器人甲?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“辛卜生公式”给出了求几何体体积的一种计算方法:夹在两个平行平面之间的几何体,如果被平行于这两个平面的任何平面所截,截得的截面面积是截面高(不超过三次)的多项式函数,那么这个几何体的体积,就等于其上底面积、下底面积与四倍中截面面积的和乘以高的六分之一.即:
,式中
,
,
,
依次为几何体的高,下底面积,上底面积,中截面面积.如图,现将曲线
与直线
及
轴围成的封闭图形绕
轴旋转一周得到一个几何体.利用辛卜生公式可求得该几何体的体积
( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】正整数数列
满足
(p,q为常数),其中
为数列
的前n项和.
(1)若
,
,求证:
是等差数列;
(2)若数列
为等差数列,求p的值;
(3)证明:
的充要条件是
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com