精英家教网 > 高中数学 > 题目详情

【题目】设全集,关于的不等式)的解集为.

1)求集合

2)设集合,若 中有且只有三个元素,求实数的取值范围.

【答案】(1)当时,;当时,

2.

【解析】

1)将不等式化简,结合绝对值的意义解不等式即可.

2)讨论两种情况下的情况.将集合B化简,结合正弦函数定义可求得集合B.再由 中有且只有三个元素可得关于的不等式组,解不等式即可求得的取值范围.

1)由

化简可得

,解集是

,

解得

所以解集是

综上所述, ,解集是;当, 解集是

2(i), ,不合题意;

(ii),

结合正弦的差角公式与余弦的差角公式展开化简可得

,

由正弦函数的性质,

,,所以

3个元素时,

满足

解不等式组可得

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数,函数,其中的一个极值点,且.

1)讨论的单调性

2)求实数a的值

3)证明

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求证:在区间上无零点;

(2)求证:有且仅有2个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当时,求函数的单调递增区间;

2)若函数只有一个零点,求实数的取值范围;

3)当时,试问:过点存在几条直线与曲线相切?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线 C 经过点 (2,3),它的渐近线方程为 y = ±.椭圆 C1与双曲线 C有相同的焦点,椭圆 C1的短轴长与双曲线 C 的实轴长相等.

1)求双曲线 C 和椭圆 C1 的方程;

2)经过椭圆 C1 左焦点 F 的直线 l 与椭圆 C1 交于 AB 两点,是否存在定点 D ,使得无论 AB 怎样运动,都有∠ADF = BDF ?若存在,求出 D 点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知相交于点,线段是圆的一条动弦,且,则的最小值是___________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】依法纳税是每个公民应尽的义务,个人取得的所得应依照《中华人民共和国个人所得税法》向国家缴纳个人所得税(简称个税).201911日起,个税税额根据应纳税所得额、税率和速算扣除数确定,计算公式为:

个税税额=应纳税所得额×税率-速算扣除数.

应纳税所得额的计算公式为:

应纳税所得额=综合所得收入额-免征额-专项扣除-专项附加扣除-依法确定的其他扣除.

其中免征额为每年60000元,税率与速算扣除数见下表:

级数

全年应纳税所得额所在区间

税率(

速算扣除数

1

3

0

2

10

2520

3

20

16920

4

25

31920

5

30

52920

6

35

85920

7

45

181920

备注:

专项扣除包括基本养老保险、基本医疗保险、失业保险等社会保险费和住房公积金。

专项附加扣除包括子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等支出。

其他扣除是指除上述免征额、专项扣除、专项附加扣除之外,由国务院决定以扣除方式减少纳税的优惠政策规定的费用。

某人全年综合所得收入额为160000元,假定缴纳的基本养老保险、基本医疗保险、失业保险等社会保险费和住房公积金占综合所得收入额的比例分别是,专项附加扣除是24000元,依法确定其他扣除是0元,那么他全年应缴纳综合所得个税____元.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平行四边形中,,过点作的垂线,交的延长线于点.连结,交于点,如图1,将沿折起,使得点到达点的位置,如图2.

(1)证明:平面平面

(2)若的中点,的中点,且平面平面,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某地区某种昆虫产卵数和温度有关.现收集了一只该品种昆虫的产卵数(个)和温度)的7组观测数据,其散点图如所示:

根据散点图,结合函数知识,可以发现产卵数和温度可用方程来拟合,令,结合样本数据可知与温度可用线性回归方程来拟合.根据收集到的数据,计算得到如下值:

27

74

182

表中

1)求和温度的回归方程(回归系数结果精确到);

2)求产卵数关于温度的回归方程;若该地区一段时间内的气温在之间(包括),估计该品种一只昆虫的产卵数的范围.(参考数据:.)

附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为

查看答案和解析>>

同步练习册答案