【题目】已知甲、乙、丙三位同学在某次考试中总成绩列前三名,有
,
,
三位学生对其排名猜测如下:
:甲第一名,乙第二名;
:丙第一名;甲第二名;
:乙第一名,甲第三名.成绩公布后得知,
,
,
三人都恰好猜对了一半,则第一名是__________.
科目:高中数学 来源: 题型:
【题目】已知复数z=
,(m∈R,i是虚数单位).
(1)若z是纯虚数,求m的值;
(2)设
是z的共轭复数,复数
+2z在复平面上对应的点在第一象限,求m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题正确的是( )
A.若数列
、
的极限都存在,且
,则数列
的极限存在
B.若数列
、
的极限都不存在,则数列
的极限也不存在
C.若数列
、
的极限都存在,则数列
、
的极限也存在
D.数
,若数列
的极限存在,则数列
的极限也存在
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
与直线
交于
两点,
不与
轴垂直,圆
.
(1)若点
在椭圆
上,点
在圆
上,求
的最大值;
(2)若过线段
的中点
且垂直于
的直线
过点
,求直线
的斜率的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,曲线
的参数方程为
(
为参数).以坐标原点
为极点,
轴正半轴为极轴,建立极坐标系,曲线
的极坐标方程为
.
(1)求曲线
的极坐标方程和曲线
的参数方程;
(2)若曲线
与曲线
,
在第一象限分别交于
两点,且
,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四边形ABCD是边长为2的菱形,
,
平面ABCD,
,且
.
![]()
(1)求直线AD和平面AEF所成角的大小;
(2)求二面角E-AF-D的平面角的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等轴双曲线
:
的右焦点为
,
为坐标原点,过
作一条渐近线的垂线
且垂足为
,
.
(1)求等轴双曲线
的方程;
(2)若过点
且方向向量为
的直线
交双曲线
于
、
两点,求
的值;
(3)假设过点
的动直线
与双曲线
交于
、
两点,试问:在
轴上是否存在定点
,使得
为常数,若存在,求出
的坐标,若不存在,试说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com