精英家教网 > 高中数学 > 题目详情
已知F1,F2是椭圆(a>b>0)的左、右焦点,A是椭圆上位于第一象限内的一点,,若椭圆的离心率等于
(1)求直线AO的方程(O为坐标原点);
(2)直线AO交椭圆于点B,若三角形ABF2的面积等于4,求椭圆的方程。
解:(1)由,知AF2⊥F1F2
因为椭圆的率心率等于
所以
可得
设椭圆方程为x2+2y2=a2
设A(x0,y0),由,知x0=c,
∴A(c,y0),代入椭圆方程可得
,故直线AO的斜率
直线AO的方程为
(2)连接AF1,BF1,AF2,BF2
由椭圆的对称性可知
所以
又由,解得a2=16,b2=16-8=8
故椭圆方程为
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知F1,F2是椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的两个焦点,若在椭圆上存在一点P,使∠F1PF2=120°,则椭圆离心率的范围是
[
3
2
,1
[
3
2
,1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1、F2是椭圆
y2
a2
+
x2
b2
=1(a>b>0)
的两个焦点,若椭圆上存在点P使得∠F1PF2=120°,求椭圆离心率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1、F2是椭圆的两个焦点.△F1AB为等边三角形,A,B是椭圆上两点且AB过F2,则椭圆离心率是
3
3
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知 F1、F2是椭圆
x2
a2
+
y2
b2
=1(a>b>0)的两个焦点,椭圆上存在一点P,使得SF1PF2=
3
b2
,则该椭圆的离心率的取值范围是
[
3
2
,1)
[
3
2
,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1,F2是椭圆
x2
2
+y2=1
的两个焦点,点P是椭圆上一个动点,那么|
PF1
+
PF2
|
的最小值是(  )

查看答案和解析>>

同步练习册答案