【题目】下列四个命题中,真命题是( )
A.和两条异面直线都相交的两条直线是异面直线
B.和两条异面直线都相交于不同点的两条直线是异面直线
C.和两条异面直线都垂直的直线是异面直线的公垂线
D.若
、
是异面直线,
、
是异面直线,则
、
是异面直线
科目:高中数学 来源: 题型:
【题目】某健身馆在2019年7、8两月推出优惠项目吸引了一批客户.为预估2020年7、8两月客户投入的健身消费金额,健身馆随机抽样统计了2019年7、8两月100名客户的消费金额,分组如下:
,
,
,…,
(单位:元),得到如图所示的频率分布直方图:
![]()
(1)请用抽样的数据预估2020年7、8两月健身客户人均消费的金额(同一组中的数据用该组区间的中点值作代表);
(2)若把2019年7、8两月健身消费金额不低于800元的客户,称为“健身达人”,经数据处理,现在列联表中得到一定的相关数据,请补全空格处的数据,并根据列联表判断是否有
的把握认为“健身达人”与性别有关?
健身达人 | 非健身达人 | 总计 | |
男 | 10 | ||
女 | 30 | ||
总计 |
(3)为吸引顾客,在健身项目之外,该健身馆特别推出健身配套营养品的销售,现有两种促销方案.
方案一:每满800元可立减100元;
方案二:金额超过800元可抽奖三次,每次中奖的概率为
,且每次抽奖互不影响,中奖1次打9折,中奖2次打8折,中奖3次打7折.
若某人打算购买1000元的营养品,请从实际付款金额的数学期望的角度分析应该选择哪种优惠方案.
附:
| 0.100 | 0.050 | 0.010 | 0.005 | |
| 2.072 | 2.706 | 3.841 | 6.635 | 7.879 |
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】提高过江大桥的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数,当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明:当20≤x≤200时,车流速度v是车流密度x的一次函数.
(1)当0≤x≤200时,求函数v(x)的表达式;
(2)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f(x)=xv(x)可以达到最大,并求出最大值.(精确到1辆/小时).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校为了普及环保知识,增强学生的环保意识,在全校组织了一次有关环保知识的竞赛,经过初赛、复赛,甲、乙两个代表队(每队
人)进入了决赛,规定每人回答一个问题,答对为本队赢得
分,答错得
分,假设甲队中每人答对的概率均为
,乙队中
人答对的概率分別为
,且各人回答正确与否相互之间没有影响,用
表示乙队的总得分.
(1)求
的分布列;
(2)求甲、乙两队总得分之和等于
分且甲队获胜的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙、丙三家企业产品的成本分别为10000,12000,15000,其成本构成如下图所示,则关于这三家企业下列说法错误的是( )
![]()
A.成本最大的企业是丙企业B.费用支出最高的企业是丙企业
C.支付工资最少的企业是乙企业D.材料成本最高的企业是丙企业
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列四个命题中,真命题是( )
A.和两条异面直线都相交的两条直线是异面直线
B.和两条异面直线都相交于不同点的两条直线是异面直线
C.和两条异面直线都垂直的直线是异面直线的公垂线
D.若
、
是异面直线,
、
是异面直线,则
、
是异面直线
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设
和
是双曲线
上的两点,线段
的中点为
,直线
不经过坐标原点
.
(1)若直线
和直线
的斜率都存在且分别为
和
,求证:
;
(2)若双曲线的焦点分别为
、
,点
的坐标为
,直线
的斜率为
,求由四点
、
、
、
所围成四边形
的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,
,函数
,记
.把函数
的最大值
称为函数
的“线性拟合度”.
(1)设函数
,
,
,求此时函数
的“线性拟合度”
;
(2)若函数
,
的值域为
(
),
,求证:
;
(3)设
,
,求
的值,使得函数
的“线性拟合度”
最小,并求出
的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆E:
过点(0,1)且离心率
.
(Ⅰ)求椭圆E的方程;
(Ⅱ)设动直线l与两定直线l1:x﹣y=0和l2:x+y=0分别交于P,Q两点.若直线l总与椭圆E有且只有一个公共点,试探究:△OPQ的面积是否存在最小值?若存在,求出该最小值;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com