【题目】若无穷数列
满足:
恒等于常数
,则称
具有局部等差数列
.
(1)若
具有局部等差数列
,且![]()
,求
;
(2)若无穷数列
是等差数列,无穷数列
是公比为正数的等比数列,
,
,
,判断
是否具有局部等差数列
,并说明理由;
(3)设
既具有局部等差数列
,又具有局部等差数列
,求证:
具有局部等差数列
.
科目:高中数学 来源: 题型:
【题目】设全集U=R,集合A={x|﹣1≤x<3},B={x|2x﹣4≥x﹣2}.
(1)求U(A∩B);
(2)若集合C={x|2x+a>0},满足B∪C=C,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,已知曲线
的参数方程为
(
为参数,
).
(Ⅰ)当
时,若曲线
上存在
两点关于点
成中心对称,求直线
的参数方程;
(Ⅱ)在以原点为极点,
轴正半轴为极轴的极坐标系中,极坐标方程为
的直线
与曲线
相交于
两点,若
,求实数
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
的左焦点为
,设
是椭圆
的两个短轴端点,
是椭圆
的长轴左端点.
(Ⅰ)当
时,设点
,直线
交椭圆
于
,且直线
的斜率分别为
,求
的值;
(Ⅱ)当
时,若经过
的直线
与椭圆
交于
两点,O为坐标原点,求
与
的面积之差的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数![]()
(1)若不等式
对
恒成立,求
的值;
(2)若
在
内有两个极值点,求负数
的取值范围;
(3)已知
,若对任意实数
,总存在实数
,使得
成立,求正实数
的取值集合.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,角A,B,C对应边分别是a,b,c,c=2,sin2A+sin2B﹣sin2C=sinAsinB.
(1)若sinC+sin(B﹣A)=2sin2A,求△ABC面积;
(2)求AB边上的中线长的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
(
,
)为奇函数,且相邻两对称轴间的距离为
.
(1)当
时,求
的单调递减区间;
(2)将函数
的图象沿
轴方向向右平移
个单位长度,再把横坐标缩短到原来的
(纵坐标不变),得到函数
的图象.当
时,求函数
的值域.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在棱长为2的正方体
中,
,
,
,
分别是棱
,
,
,
的中点,点
,
分别在棱
,
上移动,且
.
![]()
(1)当
时,证明:直线
平面
;
(2)是否存在
,使面
与面
所成的二面角为直二面角?若存在,求出
的值;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com