【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,已知曲线
的参数方程为
(
为参数,
).
(Ⅰ)当
时,若曲线
上存在
两点关于点
成中心对称,求直线
的参数方程;
(Ⅱ)在以原点为极点,
轴正半轴为极轴的极坐标系中,极坐标方程为
的直线
与曲线
相交于
两点,若
,求实数
的值.
科目:高中数学 来源: 题型:
【题目】甲、乙两企业生产同一种型号零件,按规定该型号零件的质量指标值落在
内为优质品.从两个企业生产的零件中各随机抽出了500件,测量这些零件的质量指标值,得结果如下表:
甲企业:
![]()
乙企业:
![]()
(1)已知甲企业的500件零件质量指标值的样本方差
,该企业生产的零件质量指标值
服从正态分布
,其中
近似为质量指标值的样本平均数
(注:求
时,同一组数据用该区间的中点值作代表),
近似为样本方差
,试根据该企业的抽样数据,估计所生产的零件中,质量指标值不低于71.92的产品的概率.(精确到0.001)
(2)由以上统计数据完成下面
列联表,并问能否在犯错误的概率不超过0.01的前提下,认为“两个分厂生产的零件的质量有差异”.
![]()
附注:
参考数据:
,
参考公式:
,
,
.
![]()
| 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,三棱柱
中,
,
,
分别为棱
的中点.
(1)在平面
内过点
作
平面
交
于点
,并写出作图步骤,但不要求证明.
(2)若侧面
侧面
,求直线
与平面
所成角的正弦值.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某电子公司开发一种智能手机的配件,每个配件的成本是15元,销售价是20元,月平均销售
件,通过改进工艺,每个配件的成本不变,质量和技术含金量提高,市场分析的结果表明,如果每个配件的销售价提高的百分率为
,那么月平均销售量减少的百分率为
,记改进工艺后电子公司销售该配件的月平均利润是
(元).
(1)写出
与
的函数关系式;
(2)改进工艺后,试确定该智能手机配件的售价,使电子公司销售该配件的月平均利润最大.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=2x2﹣kx﹣4在区间[﹣2,4]上具有单调性,则k的取值范围是( )
A.[﹣8,16]
B.(﹣∞,﹣8]∪[16,+∞)
C.(﹣∞,﹣8)∪(16,+∞)
D.[16,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列每组函数是同一函数的是( )
A.f(x)=x0与f(x)=1
B.f(x)=
﹣1与f(x)=|x|﹣1
C.f(x)=
与f(x)=x﹣2
D.f(x)=
与f(x)= ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若无穷数列
满足:
恒等于常数
,则称
具有局部等差数列
.
(1)若
具有局部等差数列
,且![]()
,求
;
(2)若无穷数列
是等差数列,无穷数列
是公比为正数的等比数列,
,
,
,判断
是否具有局部等差数列
,并说明理由;
(3)设
既具有局部等差数列
,又具有局部等差数列
,求证:
具有局部等差数列
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com