【题目】公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”,利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出n的值为( )(参考数据:sin15°=0.2588,sin7.5°=0.1305)
![]()
A. 12B. 24C. 48D. 96
科目:高中数学 来源: 题型:
【题目】关于函数
,有下列命题:①当
时,
是增函数;当
时,
是减函数;②其图象关于
轴对称;③
无最大值,也无最小值;④
在区间
上是增函数;⑤
的最小值是
。其中所有不正确命题的序号是________
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了引导居民合理用水,某市决定全面实施阶梯水价.阶梯水价原则上以住宅(一套住宅为一户)的月用水量为基准定价,具体划分标准如表:
阶梯级别 | 第一阶梯水量 | 第二阶梯水量 | 第三阶梯水量 |
月用水量范围(单位:立方米) |
|
|
|
从本市随机抽取了10户家庭,统计了同一月份的月用水量,得到如图茎叶图:
![]()
(1)现要在这10户家庭中任意选取3家,求取到第二阶梯水量的户数
的分布列与数学期望;
(2)用抽到的10户家庭作为样本估计全市的居民用水情况,从全市依次随机抽取10户,若抽到
户月用水量为二阶的可能性最大,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(题文)如图,在五面体ABCDEF中,四边形EDCF是正方形,
.
![]()
(1)证明:
;
(2)已知四边形ABCD是等腰梯形,且
,求五面体ABCDEF的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】a,b为空间中两条互相垂直的直线,等腰直角三角形ABC的直角边AC所在直线与a,b都垂直,斜边AB以直线AC为旋转轴旋转,若直线AB与a成角为60
,则AB与b成角为
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系x
y中,曲线C的参数方程为
为参数),在以
为极点,
轴的非负半轴为极轴的极坐标系中,直线
的极坐标方程为
。
(1)求曲线C的极坐标方程;
(2)设直线
与曲线C相交于A,B两点,P为曲C上的一动点,求△PAB面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】分形几何学是一门以不规则几何形态为研究对象的几何学.分形的外表结构极为复杂,但其内部却是有规律可寻的.一个数学意义上分形的生成是基于一个不断迭代的方程式,即一种基于递归的反馈系统.下面我们用分形的方法来得到一系列图形,如图1,线段
的长度为a,在线段
上取两个点
,
,使得
,以
为一边在线段
的上方做一个正六边形,然后去掉线段
,得到图2中的图形;对图2中的最上方的线段
作相同的操作,得到图3中的图形;依此类推,我们就得到了以下一系列图形:
![]()
记第
个图形(图1为第1个图形)中的所有线段长的和为
,现给出有关数列
的四个命题:
①数列
是等比数列;
②数列
是递增数列;
③存在最小的正数
,使得对任意的正整数
,都有
;
④存在最大的正数
,使得对任意的正整数
,都有
.
其中真命题的序号是________________(请写出所有真命题的序号).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com