【题目】设
,若
时均有
,则
______.
【答案】![]()
【解析】
当a=1时,不等式不可能恒成立;当a≠1,若对任意的x>0时均有
,则构造函数y1=(a﹣1)x﹣1,y2=x2﹣3ax﹣1,与x轴交于同一点,代入可得答案.
当a=1时,代入题中不等式得
,明显不恒成立,舍.
当a≠1,构造函数y1=(a﹣1)x﹣1,y2=x2﹣3ax﹣1,它们都过定点P(0,﹣1).
在函数y1=(a﹣1)x﹣1中,令y=0,得M(
,0);
在函数y2=x2﹣3ax﹣1,∵x>0时,均有
成立,
又∵y2=x2﹣3ax﹣1开口向上,随着
的增加,y2>0成立,所以a﹣1>0.
∴y2=x2﹣3ax﹣1显然过点M(
,0),代入得:(
)2﹣3a
﹣1=0,
解之得:a=
或a=0(舍去).
故答案为:
.
![]()
科目:高中数学 来源: 题型:
【题目】公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”,利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出n的值为( )(参考数据:sin15°=0.2588,sin7.5°=0.1305)
![]()
A. 12B. 24C. 48D. 96
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆
与直线
相切于点
,圆心
在
轴上.
(1)求圆
的方程;
(2)过点
且不与
轴重合的直线
与圆
相交于
两点,
为坐标原点,直线
分别与直线
相交于
两点,记
,
的面积分别是
,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”,利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出n的值为( )(参考数据:sin15°=0.2588,sin7.5°=0.1305)
![]()
A. 12B. 24C. 48D. 96
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
过点
且离心率为
.
(1)求椭圆C的方程;
(2)是否存在过点
的直线
与椭圆C相交于A,B两点,且满足
.若存在,求出直线
的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”,利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出n的值为( )(参考数据:sin15°=0.2588,sin7.5°=0.1305)
![]()
A. 12B. 24C. 48D. 96
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(题文)已知
是直线
上的动点,点
的坐标是
,过
的直线
与
垂直,并且
与线段
的垂直平分线相交于点
.
(1)求点
的轨迹
的方程;
(2)设曲线
上的动点
关于
轴的对称点为
,点
的坐标为
,直线
与曲线
的另一个交点为
(
与
不重合),是否存在一个定点
,使得
三点共线?若存在,求出点
的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,某种水箱用的“浮球”,是由两个半球和一个圆柱筒组成的.已知半球的直径是6 cm,圆柱筒高为2 cm.
![]()
(1)这种“浮球”的体积是多少cm3(结果精确到0.1)?
(2)要在2 500个这样的“浮球”表面涂一层胶,如果每平方米需要涂胶100克,那么共需胶多少克?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com